Update notebooks
This commit is contained in:
parent
e84027a043
commit
04ea5bdf6c
@ -17,12 +17,6 @@
|
|||||||
"from sklearn import metrics\n",
|
"from sklearn import metrics\n",
|
||||||
"import matplotlib.pyplot as plt\n",
|
"import matplotlib.pyplot as plt\n",
|
||||||
"import pandas as pd\n",
|
"import pandas as pd\n",
|
||||||
"\n",
|
|
||||||
"# Triskele\n",
|
|
||||||
"import sys\n",
|
|
||||||
"from pathlib import Path\n",
|
|
||||||
"triskele_path = Path('../triskele/python')\n",
|
|
||||||
"sys.path.append(str(triskele_path.resolve()))\n",
|
|
||||||
"import triskele\n",
|
"import triskele\n",
|
||||||
"\n",
|
"\n",
|
||||||
"figsize = np.array((16, 9))"
|
"figsize = np.array((16, 9))"
|
||||||
@ -41,9 +35,9 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"df_dfc_lbl = pd.read_csv('../labels.csv')\n",
|
"df_dfc_lbl = pd.read_csv('../../minigrida/Data/ground_truth/labels.csv')\n",
|
||||||
"df_meta_idx = pd.read_csv('../metaclass_indexes.csv')\n",
|
"df_meta_idx = pd.read_csv('../../minigrida/Data/ground_truth/jurse_meta_idx.csv')\n",
|
||||||
"df_meta_lbl = pd.read_csv('../metaclass_labels.csv')\n",
|
"df_meta_lbl = pd.read_csv('../../minigrida/Data/ground_truth/jurse_meta_lbl.csv')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"df_dfc_lbl.merge(df_meta_idx).merge(df_meta_lbl)"
|
"df_dfc_lbl.merge(df_meta_idx).merge(df_meta_lbl)"
|
||||||
]
|
]
|
||||||
@ -71,7 +65,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"gt = triskele.read('../Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif')\n",
|
"gt = triskele.read('../Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif')\n",
|
||||||
"pred = triskele.read('../Res/tmppred_8_10pleaf_3cv.tif')"
|
"pred = triskele.read('../../minigrida/Enrichment/Results/tellus_fourhth_95bfcf.tif')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -111,7 +105,7 @@
|
|||||||
"fig, (ax_gt, ax_pred) = plt.subplots(2, figsize=figsize * 2)\n",
|
"fig, (ax_gt, ax_pred) = plt.subplots(2, figsize=figsize * 2)\n",
|
||||||
"ax_gt.imshow(meta_idx[gt])\n",
|
"ax_gt.imshow(meta_idx[gt])\n",
|
||||||
"ax_gt.set_title('Ground Truth')\n",
|
"ax_gt.set_title('Ground Truth')\n",
|
||||||
"ax_pred.imshow(meta_idx[pred])\n",
|
"ax_pred.imshow(pred)\n",
|
||||||
"ax_pred.set_title('Prediction')\n",
|
"ax_pred.set_title('Prediction')\n",
|
||||||
"plt.show()"
|
"plt.show()"
|
||||||
]
|
]
|
||||||
@ -212,17 +206,32 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"f = np.nonzero(pred)\n",
|
"f = np.nonzero(pred)\n",
|
||||||
"m_pred_s = meta_idx[pred_s]\n",
|
"m_pred_s = pred_s\n",
|
||||||
"m_gt_s = meta_idx[gt_s]\n",
|
"m_gt_s = meta_idx[gt_s]\n",
|
||||||
"\n",
|
"\n",
|
||||||
"ct = pd.crosstab(m_gt_s, m_pred_s,\n",
|
"ct = pd.crosstab(m_gt_s, m_pred_s,\n",
|
||||||
" rownames=['Prediction'], colnames=['Reference'],\n",
|
" rownames=['Prediction'], colnames=['Reference'],\n",
|
||||||
" margins=True, margins_name='Total',\n",
|
" margins=True, margins_name='Total',\n",
|
||||||
" normalize=False # all, index, columns\n",
|
" normalize=False # all, index, columns, False\n",
|
||||||
" )\n",
|
" )\n",
|
||||||
"ct"
|
"ct"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"lbl = df_meta_lbl['metaclass_label'][ct.columns[:-1]].tolist()\n",
|
||||||
|
"lbl.append('Total')\n",
|
||||||
|
"ct.columns = lbl\n",
|
||||||
|
"ct.columns.name = 'Reference'\n",
|
||||||
|
"ct.index = lbl\n",
|
||||||
|
"ct.index.name = 'Reference'\n",
|
||||||
|
"ct"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -273,6 +282,13 @@
|
|||||||
"metrics.precision_recall_fscore_support(m_gt_s, m_pred_s)\n",
|
"metrics.precision_recall_fscore_support(m_gt_s, m_pred_s)\n",
|
||||||
"print(metrics.classification_report(m_gt_s, m_pred_s))"
|
"print(metrics.classification_report(m_gt_s, m_pred_s))"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
|||||||
@ -160,7 +160,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"count = 5\n",
|
"count = 4\n",
|
||||||
"\n",
|
"\n",
|
||||||
"step = int(gt.shape[0] / count)\n",
|
"step = int(gt.shape[0] / count)\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
|||||||
@ -53,7 +53,12 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"raster = ra.rasterize_cache('intensity', C1, 1., 'nearest', False, cache_dir='../Res/enrichment_rasters')"
|
"raster = ra.rasterize_cache('num_returns', C1, .5, 'nearest', False, cache_dir='../Res/enrichment_rasters')\n",
|
||||||
|
"\n",
|
||||||
|
"plt.figure(figsize=figsize)\n",
|
||||||
|
"plt.imshow(raster, origin='upper')\n",
|
||||||
|
"plt.show()\n",
|
||||||
|
"plt.imsave('../Res/raster_validation.png', raster)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@ -29,7 +29,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"n = 5; d = 0"
|
"n = 1; d = 0"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -173,6 +173,82 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"t_dsp.run()"
|
"t_dsp.run()"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Split cross val"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"d = 0\n",
|
||||||
|
"s = 2\n",
|
||||||
|
"n = 3\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"step = int(descriptors.shape[d] / n)\n",
|
||||||
|
"size = descriptors.shape[d]\n",
|
||||||
|
"cfilter = (np.arange(size) - step * s) % size < step\n",
|
||||||
|
"\n",
|
||||||
|
"test_filter = np.zeros_like(descriptors[:,:,0], dtype=np.bool)\n",
|
||||||
|
"view = np.moveaxis(test_filter, d, 0)\n",
|
||||||
|
"view[cfilter] = True\n",
|
||||||
|
"\n",
|
||||||
|
"plt.imshow(test_filter)\n",
|
||||||
|
"plt.show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"descriptors[test_filter].shape"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"descriptors.shape"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"f = np.zeros_like(test_filter, dtype=np.bool)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"test_filter |= f\n",
|
||||||
|
"test_filter"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"test_filter"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user