Better filtering and cliping when loading lidar
This commit is contained in:
parent
eb6a39896c
commit
11baca069b
@ -40,7 +40,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"C1 = ra.bulk_load('../Data/lidar/C1', 'C1', filter_treshold=0, dtype=np.float32)\n",
|
||||
"C1 = ra.bulk_load('../Data/lidar/C1', 'C1', filter_treshold=.01, clip_treshold=.1, dtype=np.float32)\n",
|
||||
"#C2 = ra.bulk_load('../Data/lidar/C2', 'C2', filter_treshold=.5, dtype=np.float32)\n",
|
||||
"#C3 = ra.bulk_load('../Data/lidar/C3', 'C3', filter_treshold=.5, dtype=np.float32)\n",
|
||||
"#C123 = ra.bulk_load('../Data/lidar', 'C123', filter_treshold=.5, dtype=np.float32)"
|
||||
@ -59,7 +59,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"raster = ra.rasterize_cache(C1, 'intensity', 1., 'nearest', True, cache_dir='../Res/')"
|
||||
"raster = ra.rasterize_cache('intensity', C1, 1., 'nearest', False, cache_dir='../Res/enrichment_rasters')"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@ -17,12 +17,12 @@ sys.path.append('../triskele/python/')
|
||||
import triskele
|
||||
import rasterizer
|
||||
|
||||
def rasterize_cache(data, field, resolution=1., method='linear', reverse_alt=False, cache_dir='/tmp'):
|
||||
def rasterize_cache(field, data, resolution=.5, interpolation='nearest', reverse_direction=False, cache_dir='/tmp'):
|
||||
"""Cache layer for rasterize"""
|
||||
|
||||
cache_dir = Path(cache_dir)
|
||||
name = '{}_{}_{}_{}{}'.format(data.name, field, str(resolution).replace('.', '_'), method,
|
||||
'_reversed' if reverse_alt else '')
|
||||
name = '{}_{}_f{}_c{}_r{}_{}{}'.format(field, data.name, data.filter_treshold, data.clip_treshold, resolution,
|
||||
interpolation, '_reversed' if reverse_direction else '')
|
||||
png_file = cache_dir.joinpath(Path(name + '.png'))
|
||||
tif_file = cache_dir.joinpath(Path(name + '.tif'))
|
||||
|
||||
@ -30,7 +30,7 @@ def rasterize_cache(data, field, resolution=1., method='linear', reverse_alt=Fal
|
||||
print ('WARNING: Loading cached result {}'.format(tif_file))
|
||||
raster = triskele.read(tif_file)
|
||||
else:
|
||||
raster = rasterizer.rasterize(data.spatial, getattr(data, field), resolution, method, reverse_alt, np.float32)
|
||||
raster = rasterizer.rasterize(data.spatial, getattr(data, field), resolution, interpolation, reverse_direction, np.float32)
|
||||
triskele.write(tif_file, raster)
|
||||
plt.imsave(png_file, raster)
|
||||
|
||||
@ -50,17 +50,20 @@ def find_las(path):
|
||||
return las
|
||||
|
||||
def extremum_filter(data, treshold=.5):
|
||||
"""Return boolean filter of extremums in data, treshold in percentil [0;100]"""
|
||||
tresholds = np.percentile(data, [treshold, 100 - treshold])
|
||||
return np.logical_or(data < tresholds[0], data > tresholds[1])
|
||||
|
||||
def auto_filter(data, treshold=.5):
|
||||
def extremum_clip(data, treshold=.5):
|
||||
"""Clip extremums in data, treshold in percentil [0;100]"""
|
||||
tresholds = np.percentile(data, [treshold, 100 - treshold])
|
||||
|
||||
data[data < tresholds[0]] = tresholds[0]
|
||||
data[data > tresholds[1]] = tresholds[1]
|
||||
np.clip(data, *tresholds, out=data)
|
||||
|
||||
def bulk_load(path, name=None, filter_treshold=.1, dtype=None):
|
||||
data = {'file': path, 'name': name}
|
||||
def bulk_load(path, name=None, filter_treshold=.1, clip_treshold=.5, dtype=None):
|
||||
data = {'file': path,
|
||||
'name': name,
|
||||
'filter_treshold': filter_treshold,
|
||||
'clip_treshold': clip_treshold}
|
||||
|
||||
attributes = ['x', 'y', 'z', 'intensity', 'num_returns']#, 'scan_angle_rank', 'pt_src_id', 'gps_time']
|
||||
for a in attributes:
|
||||
@ -84,19 +87,19 @@ def bulk_load(path, name=None, filter_treshold=.1, dtype=None):
|
||||
print('\rCreate matrices: [Done]')
|
||||
|
||||
print('Filter data...', end='')
|
||||
Z = data['z'].copy()
|
||||
auto_filter(Z)
|
||||
data['spatial'] = np.array((data['x'], data['y'], Z)).T
|
||||
del Z
|
||||
|
||||
t = .1
|
||||
efilter = np.logical_or(extremum_filter(data['intensity'], t), extremum_filter(data['z']))
|
||||
|
||||
attributes.append('spatial')
|
||||
z_or_i = np.logical_or(extremum_filter(data['z'], filter_treshold),
|
||||
extremum_filter(data['intensity'], filter_treshold))
|
||||
for i, a in enumerate(attributes):
|
||||
print('\rFilter data: [{:3d}%]'.format(int(i/len(attributes) * 100)), end='')
|
||||
data[a] = data[a][np.logical_not(efilter)]
|
||||
data[a] = data[a][~z_or_i]
|
||||
print('\rFilter data: [Done]')
|
||||
|
||||
print('Clip data...', end='')
|
||||
extremum_clip(data['z'], clip_treshold)
|
||||
extremum_clip(data['intensity'], clip_treshold)
|
||||
data['spatial'] = np.array((data['x'], data['y'], data['z'])).T
|
||||
attributes.append('spatial')
|
||||
print('\rClip data: [Done]')
|
||||
|
||||
class TMPLAS(object):
|
||||
def __init__(self, d):
|
||||
|
||||
Loading…
Reference in New Issue
Block a user