Fix treshold 👌
This commit is contained in:
parent
d0971e58a4
commit
44e83910a6
@ -50,6 +50,13 @@
|
||||
"disp_test.run()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Metadata copy bug"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@ -64,7 +71,7 @@
|
||||
"in_test = ld2dap.LoadTIFF(rasters)\n",
|
||||
"tresh_test.input = in_test\n",
|
||||
"tresh2_test.input = tresh_test\n",
|
||||
"disp_test.input = in_test\n",
|
||||
"disp_test.input = tresh_test\n",
|
||||
"o.input = in_test\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@ -72,13 +79,10 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"A = list()\n",
|
||||
"A.copy()"
|
||||
"### New treshold"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -87,7 +91,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(o.metadata[0])"
|
||||
"o.data.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -96,7 +100,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"[x.copy() for x in o.metadata]"
|
||||
"o.data.max(axis=(0,1)).shape, o.data.max(axis=(0,1))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -105,8 +109,21 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mdesc = o.metadata[0].desc\n",
|
||||
"mdesc_copy = o.metadata[0].desc.copy()"
|
||||
"t = 1e3\n",
|
||||
"\n",
|
||||
"o.run()\n",
|
||||
"f = o.data > t\n",
|
||||
"o.data[f] = np.nan\n",
|
||||
"m = np.nanmax(o.data, axis=(0,1))\n",
|
||||
"r = f.sum(axis=(0,1))\n",
|
||||
"\n",
|
||||
"display(m, r)\n",
|
||||
"\n",
|
||||
"o.data = np.rollaxis(o.data, 2)\n",
|
||||
"f = np.rollaxis(f, 2)\n",
|
||||
"\n",
|
||||
"o.data[f] = np.repeat(m, r)\n",
|
||||
"o.data = np.rollaxis(o.data, 0, 3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -115,7 +132,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"o.metadata[0].desc.app"
|
||||
"o.data.max(axis=(0,1))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -124,7 +141,14 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"hex(id(mdesc)), hex(id(o.metadata[0].desc)), hex(id(mdesc_copy))"
|
||||
"A = np.zeros((10,20,2))\n",
|
||||
"display(A.shape)\n",
|
||||
"\n",
|
||||
"A = np.rollaxis(A, 2)\n",
|
||||
"display(A.shape)\n",
|
||||
"\n",
|
||||
"A = np.rollaxis(A,0,3)\n",
|
||||
"A.shape\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -133,7 +157,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mdesc_copy.append('BDQ')"
|
||||
"A.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -142,7 +166,67 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mdesc_copy"
|
||||
"A = np.zeros((10,10,2))\n",
|
||||
"A[:,:,1] = 1\n",
|
||||
"\n",
|
||||
"F = np.random.random((10,10,2)) < .2\n",
|
||||
"\n",
|
||||
"r = F.sum(axis=(0,1))\n",
|
||||
"m = np.array([10, 20])\n",
|
||||
"\n",
|
||||
"A = np.rollaxis(A, 2)\n",
|
||||
"F = np.rollaxis(F, 2)\n",
|
||||
"\n",
|
||||
"A[F] = np.repeat(m, r)\n",
|
||||
"\n",
|
||||
"A = np.rollaxis(A, 0, 3)\n",
|
||||
"A\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"want = f.sum(axis=(0,1))\n",
|
||||
"want"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"np.repeat(np.nanmax(o.data, axis=(0,1)), f.sum(axis=(0,1)))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"f.any()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"o.data[f] = 0"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"np.tile(m, (2,1))"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
@ -9,24 +9,36 @@
|
||||
# TODO details
|
||||
|
||||
from ld2dap.core import Filter
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Treshold(Filter):
|
||||
def __init__(self, treshold, max_value=None):
|
||||
super().__init__(self.__class__.__name__)
|
||||
self.treshold = treshold
|
||||
self.max_value = max_value #if max_value is not None else treshold
|
||||
self.treshold = treshold
|
||||
self.max_value = max_value # if max_value is not None else treshold
|
||||
|
||||
def _process(self, data, metadata):
|
||||
# TODO: UPGRADE RASTER DEPENDANCE
|
||||
# TODO: UPGRADE STACK DEPENDANCE
|
||||
# This filter each raster independently
|
||||
self.logger.info('Filtering')
|
||||
|
||||
treshold_filter = data > self.treshold
|
||||
repeat_count = treshold_filter.sum(axis=(0, 1))
|
||||
data[treshold_filter] = np.nan
|
||||
|
||||
if self.max_value is None:
|
||||
self.max_value = data[data < self.treshold].max()
|
||||
self.max_value = np.nanmax(data, axis=(0, 1))
|
||||
|
||||
data = np.rollaxis(data, 2)
|
||||
treshold_filter = np.rollaxis(treshold_filter, 2)
|
||||
|
||||
data[treshold_filter] = np.repeat(self.max_value, repeat_count)
|
||||
data = np.rollaxis(data, 0, 3)
|
||||
|
||||
for stack in metadata:
|
||||
for d, s in zip(stack.desc, stack.symb):
|
||||
d.append('treshold {}'.format(self.treshold))
|
||||
#s.append('T_{{{}}}'.format(self.treshold))
|
||||
# s.append('T_{{{}}}'.format(self.treshold))
|
||||
|
||||
## TODO: TMP FIX
|
||||
#data[:,:,stack.begin][data[:,:,stack.begin] > self.treshold] = data[:,:,stack.begin][data[:,:,stack.begin]].max()
|
||||
|
||||
return data * (data < self.treshold) + self.max_value * (data >= self.treshold), metadata
|
||||
return data, metadata
|
||||
|
Loading…
Reference in New Issue
Block a user