Fix treshold 👌

This commit is contained in:
Florent Guiotte 2018-05-10 13:04:04 +02:00
parent d0971e58a4
commit 44e83910a6
2 changed files with 119 additions and 23 deletions

View File

@ -50,6 +50,13 @@
"disp_test.run()" "disp_test.run()"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Metadata copy bug"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
@ -64,7 +71,7 @@
"in_test = ld2dap.LoadTIFF(rasters)\n", "in_test = ld2dap.LoadTIFF(rasters)\n",
"tresh_test.input = in_test\n", "tresh_test.input = in_test\n",
"tresh2_test.input = tresh_test\n", "tresh2_test.input = tresh_test\n",
"disp_test.input = in_test\n", "disp_test.input = tresh_test\n",
"o.input = in_test\n", "o.input = in_test\n",
"\n", "\n",
"\n", "\n",
@ -72,13 +79,10 @@
] ]
}, },
{ {
"cell_type": "code", "cell_type": "markdown",
"execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [],
"source": [ "source": [
"A = list()\n", "### New treshold"
"A.copy()"
] ]
}, },
{ {
@ -87,7 +91,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(o.metadata[0])" "o.data.shape"
] ]
}, },
{ {
@ -96,7 +100,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"[x.copy() for x in o.metadata]" "o.data.max(axis=(0,1)).shape, o.data.max(axis=(0,1))"
] ]
}, },
{ {
@ -105,8 +109,21 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"mdesc = o.metadata[0].desc\n", "t = 1e3\n",
"mdesc_copy = o.metadata[0].desc.copy()" "\n",
"o.run()\n",
"f = o.data > t\n",
"o.data[f] = np.nan\n",
"m = np.nanmax(o.data, axis=(0,1))\n",
"r = f.sum(axis=(0,1))\n",
"\n",
"display(m, r)\n",
"\n",
"o.data = np.rollaxis(o.data, 2)\n",
"f = np.rollaxis(f, 2)\n",
"\n",
"o.data[f] = np.repeat(m, r)\n",
"o.data = np.rollaxis(o.data, 0, 3)"
] ]
}, },
{ {
@ -115,7 +132,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"o.metadata[0].desc.app" "o.data.max(axis=(0,1))"
] ]
}, },
{ {
@ -124,7 +141,14 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"hex(id(mdesc)), hex(id(o.metadata[0].desc)), hex(id(mdesc_copy))" "A = np.zeros((10,20,2))\n",
"display(A.shape)\n",
"\n",
"A = np.rollaxis(A, 2)\n",
"display(A.shape)\n",
"\n",
"A = np.rollaxis(A,0,3)\n",
"A.shape\n"
] ]
}, },
{ {
@ -133,7 +157,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"mdesc_copy.append('BDQ')" "A.shape"
] ]
}, },
{ {
@ -142,7 +166,67 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"mdesc_copy" "A = np.zeros((10,10,2))\n",
"A[:,:,1] = 1\n",
"\n",
"F = np.random.random((10,10,2)) < .2\n",
"\n",
"r = F.sum(axis=(0,1))\n",
"m = np.array([10, 20])\n",
"\n",
"A = np.rollaxis(A, 2)\n",
"F = np.rollaxis(F, 2)\n",
"\n",
"A[F] = np.repeat(m, r)\n",
"\n",
"A = np.rollaxis(A, 0, 3)\n",
"A\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"want = f.sum(axis=(0,1))\n",
"want"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.repeat(np.nanmax(o.data, axis=(0,1)), f.sum(axis=(0,1)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f.any()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"o.data[f] = 0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.tile(m, (2,1))"
] ]
} }
], ],

View File

@ -9,6 +9,8 @@
# TODO details # TODO details
from ld2dap.core import Filter from ld2dap.core import Filter
import numpy as np
class Treshold(Filter): class Treshold(Filter):
def __init__(self, treshold, max_value=None): def __init__(self, treshold, max_value=None):
@ -17,16 +19,26 @@ class Treshold(Filter):
self.max_value = max_value # if max_value is not None else treshold self.max_value = max_value # if max_value is not None else treshold
def _process(self, data, metadata): def _process(self, data, metadata):
# TODO: UPGRADE RASTER DEPENDANCE # TODO: UPGRADE STACK DEPENDANCE
# This filter each raster independently
self.logger.info('Filtering')
treshold_filter = data > self.treshold
repeat_count = treshold_filter.sum(axis=(0, 1))
data[treshold_filter] = np.nan
if self.max_value is None: if self.max_value is None:
self.max_value = data[data < self.treshold].max() self.max_value = np.nanmax(data, axis=(0, 1))
data = np.rollaxis(data, 2)
treshold_filter = np.rollaxis(treshold_filter, 2)
data[treshold_filter] = np.repeat(self.max_value, repeat_count)
data = np.rollaxis(data, 0, 3)
for stack in metadata: for stack in metadata:
for d, s in zip(stack.desc, stack.symb): for d, s in zip(stack.desc, stack.symb):
d.append('treshold {}'.format(self.treshold)) d.append('treshold {}'.format(self.treshold))
# s.append('T_{{{}}}'.format(self.treshold)) # s.append('T_{{{}}}'.format(self.treshold))
## TODO: TMP FIX return data, metadata
#data[:,:,stack.begin][data[:,:,stack.begin] > self.treshold] = data[:,:,stack.begin][data[:,:,stack.begin]].max()
return data * (data < self.treshold) + self.max_value * (data >= self.treshold), metadata