From 6b179c4bfba29a3584b4c0074e5aa6c739459189 Mon Sep 17 00:00:00 2001 From: Karamaz0V1 Date: Fri, 30 Mar 2018 23:01:57 +0200 Subject: [PATCH] Lost all my work on HAPs and LFAPs (nginx fixed!) --- Notebooks/HAPs.ipynb | 140 ++++++++++++++++++++++++------------------- 1 file changed, 80 insertions(+), 60 deletions(-) diff --git a/Notebooks/HAPs.ipynb b/Notebooks/HAPs.ipynb index 83cce89..9b8e966 100644 --- a/Notebooks/HAPs.ipynb +++ b/Notebooks/HAPs.ipynb @@ -30,17 +30,42 @@ "outputs": [], "source": [ "# Specific Utils\n", + "im_size = 2\n", "\n", "def DFC_filter(raster):\n", " raster[raster > 1e4] = raster[raster < 1e4].max()\n", "\n", "def show(im):\n", - " plt.figure(figsize=(16*2,3*2))\n", + " plt.figure(figsize=(16*im_size,3*im_size))\n", " plt.imshow(im)\n", " plt.colorbar()\n", + " plt.show()\n", + "\n", + "def mshow(Xs, titles=None):\n", + " s = len(Xs)\n", + "\n", + " plt.figure(figsize=(16*im_size,3*im_size*s))\n", + "\n", + " for i in range(s):\n", + " plt.subplot(s,1,i+1)\n", + " plt.imshow(Xs[i])\n", + " \n", + " if titles is not None:\n", + " plt.title(titles[i])\n", + " \n", + " plt.colorbar()\n", + " \n", + " plt.savefig('test.png', bbox_inches='tight', pad_inches=1)\n", " plt.show()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load a single raster" + ] + }, { "cell_type": "code", "execution_count": null, @@ -61,6 +86,13 @@ "show(raster)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compute attributes" + ] + }, { "cell_type": "code", "execution_count": null, @@ -76,6 +108,19 @@ "attributes.shape" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "figs = list()\n", + "for i in range(attributes.shape[2]):\n", + " figs.append(attributes[:,:,i])\n", + " \n", + "mshow(figs)" + ] + }, { "cell_type": "code", "execution_count": null, @@ -83,10 +128,17 @@ "outputs": [], "source": [ "a = attributes\n", - "i = 3\n", + "i = 7\n", "show(a[:,:,i].astype(np.float) - a[:,:,i+1])" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compute patches" + ] + }, { "cell_type": "code", "execution_count": null, @@ -125,7 +177,7 @@ "metadata": {}, "outputs": [], "source": [ - "offset_stack[-3,-3,:].reshape(-1,1)" + "offset_stack[-2,-3,:].reshape(-1,1)" ] }, { @@ -134,7 +186,8 @@ "metadata": {}, "outputs": [], "source": [ - "show(offset_stack[:,:,0])" + "stack_std = np.std(offset_stack, axis=-1)\n", + "stack_std.shape" ] }, { @@ -143,7 +196,11 @@ "metadata": {}, "outputs": [], "source": [ - "del offset_stack" + "stack_mean = np.mean(offset_stack, axis=-1)\n", + "stack_avr = np.average(offset_stack, axis=-1)\n", + "stack_var = np.var(offset_stack, axis=-1)\n", + "stack_min = np.min(offset_stack, axis=-1)\n", + "stack_max = np.max(offset_stack, axis=-1)" ] }, { @@ -152,61 +209,24 @@ "metadata": {}, "outputs": [], "source": [ - "hist = np.stack(raster, raster[:]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "np.repeat(100,10)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "pstl = list()\n", - "\n", - "for c, p in [(100, .06), (60, .1), (12, .5), (20, .3)]:\n", - " st = np.random.binomial(np.repeat(c,1e7), p)\n", - " pst = pd.DataFrame(st, columns=['{} - {}'.format(c, p)])\n", - " pstl.append(pst)\n", - " \n", - "psta = pd.concat(pstl)\n", - "pd.options.display.float_format = '{:.2f}'.format\n", - "display(psta.describe())\n", - "psta.hist(figsize=(16, 9))\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "pd.concat([pst, pst], axis=1)" + "size = '{}x{}'.format(patch_size, patch_size)\n", + "figs = [raster,\n", + " stack_avr,\n", + " stack_mean,\n", + " stack_min,\n", + " stack_max,\n", + " stack_var,\n", + " stack_std\n", + " ]\n", + "ttls = ['Origin',\n", + " 'Average ' + size,\n", + " 'Mean ' + size,\n", + " 'Minimum ' + size,\n", + " 'Maximum ' + size,\n", + " 'Variance ' + size,\n", + " 'STD ' + size\n", + " ]\n", + "mshow(figs, ttls)" ] } ],