Merge branch 'master' of http://git.normalized.xyz/Florent/LD2DAPs
This commit is contained in:
commit
b283a4ca41
186
Notebooks/Kernel Density Estimation.ipynb
Normal file
186
Notebooks/Kernel Density Estimation.ipynb
Normal file
@ -0,0 +1,186 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"from pathlib import Path\n",
|
||||
"import numpy as np\n",
|
||||
"from scipy import stats\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"triskele_path = Path('../triskele/python/')\n",
|
||||
"sys.path.append(str(triskele_path.resolve()))\n",
|
||||
"import triskele\n",
|
||||
"\n",
|
||||
"# Specific Utils\n",
|
||||
"\n",
|
||||
"def DFC_filter(raster):\n",
|
||||
" raster[raster > 1e4] = raster[raster < 1e4].max()\n",
|
||||
"\n",
|
||||
"def show(im, im_size=1, save=None):\n",
|
||||
" plt.figure(figsize=(16*im_size,3*im_size))\n",
|
||||
" plt.imshow(im)\n",
|
||||
" plt.colorbar()\n",
|
||||
" \n",
|
||||
" if save is not None:\n",
|
||||
" plt.savefig(save, bbox_inches='tight', pad_inches=1)\n",
|
||||
" \n",
|
||||
" plt.show()\n",
|
||||
"\n",
|
||||
"def mshow(Xs, titles=None, im_size=1, save=None):\n",
|
||||
" s = len(Xs)\n",
|
||||
"\n",
|
||||
" plt.figure(figsize=(16*im_size,3*im_size*s))\n",
|
||||
"\n",
|
||||
" for i in range(s):\n",
|
||||
" plt.subplot(s,1,i+1)\n",
|
||||
" plt.imshow(Xs[i])\n",
|
||||
" \n",
|
||||
" if titles is not None:\n",
|
||||
" plt.title(titles[i])\n",
|
||||
" \n",
|
||||
" plt.colorbar()\n",
|
||||
" \n",
|
||||
" if save is not None:\n",
|
||||
" plt.savefig(save, bbox_inches='tight', pad_inches=1)\n",
|
||||
" \n",
|
||||
" plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Kernel Density Estimation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"raster = triskele.read('../Data/test.tiff')\n",
|
||||
"show(raster)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"kernel = stats.gaussian_kde(raster.reshape(-1))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import cv2\n",
|
||||
"\n",
|
||||
"test = cv2.imread('/home/florent/Pictures/Jura-Panorama.jpg')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"bins = [x for x in range(100)]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"kernel.pdf(bins)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plt.plot(bins, kernel.pdf(bins))\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"show(test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"kB = stats.gaussian_kde(test[:,:,0].reshape(-1))\n",
|
||||
"kG = stats.gaussian_kde(test[:,:,1].reshape(-1))\n",
|
||||
"kR = stats.gaussian_kde(test[:,:,2].reshape(-1))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"bins = [x for x in range(255)]\n",
|
||||
"plt.plot(bins, kB.pdf(bins))\n",
|
||||
"plt.plot(bins, kG.pdf(bins))\n",
|
||||
"plt.plot(bins, kR.pdf(bins))\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"bins = [x for x in range(10)]\n",
|
||||
"plt.plot(bins, kB.pdf(bins))\n",
|
||||
"plt.plot(bins, kG.pdf(bins))\n",
|
||||
"plt.plot(bins, kR.pdf(bins))\n",
|
||||
"plt.show()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@ -12,6 +12,7 @@ from core import Filter
|
||||
|
||||
## TODO: dep
|
||||
import sys
|
||||
import numpy as np
|
||||
sys.path.append('../triskele/python')
|
||||
import triskele
|
||||
|
||||
@ -31,4 +32,6 @@ class AttributeProfiles(Filter):
|
||||
standard_deviation=self.sd,
|
||||
moment_of_inertia=self.moi)
|
||||
|
||||
return att, None
|
||||
att = np.dstack((att_min, att_max))
|
||||
|
||||
return att, metadata
|
||||
|
||||
@ -8,7 +8,7 @@
|
||||
#
|
||||
# TODO details
|
||||
|
||||
from core import Input
|
||||
from core import Input, Stack
|
||||
import numpy as np
|
||||
|
||||
## TODO: dep
|
||||
@ -23,10 +23,15 @@ class LoadTIFF(Input):
|
||||
|
||||
def _process(self, data, metadata):
|
||||
layers = list()
|
||||
metadata = list()
|
||||
|
||||
for file in self.files:
|
||||
for i, file in enumerate(self.files):
|
||||
print('Loading {}'.format(file))
|
||||
layers.append(triskele.read(file))
|
||||
metadata.append(Stack(i, desc=file, symb='I_{{{}}}'.format(i)))
|
||||
|
||||
return np.stack(layers, axis=2), self.files
|
||||
return np.stack(layers, axis=2), metadata
|
||||
|
||||
def I(self, i):
|
||||
return self.files[i]
|
||||
|
||||
|
||||
31
ld2dap/SaveFig.py
Normal file
31
ld2dap/SaveFig.py
Normal file
@ -0,0 +1,31 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
# \file SaveFig.py
|
||||
# \brief TODO
|
||||
# \author Florent Guiotte <florent.guiotte@gmail.com>
|
||||
# \version 0.1
|
||||
# \date 09 avril 2018
|
||||
#
|
||||
# TODO details
|
||||
|
||||
from core import Output
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class SaveFig(Output):
|
||||
def __init__(self, fname, bbox_inches='tight', pad_inches=1):
|
||||
super().__init__(self.__class__.__name__)
|
||||
self.fname = fname
|
||||
self.bbox_inches = bbox_inches
|
||||
self.pad_inches = pad_inches
|
||||
|
||||
def _process(self, data, metadata):
|
||||
im_size = 2
|
||||
fig = plt.figure(figsize=(16*im_size,3*im_size))
|
||||
f1 = fig.add_subplot(111)
|
||||
img = f1.imshow(data[:,:,-1])
|
||||
plt.colorbar(img)
|
||||
if metadata is not None:
|
||||
f1.set_title(metadata[-1])
|
||||
fig.savefig(self.fname, bbox_inches=self.bbox_inches, pad_inches=self.pad_inches)
|
||||
plt.close(fig)
|
||||
31
ld2dap/ShowFig.py
Normal file
31
ld2dap/ShowFig.py
Normal file
@ -0,0 +1,31 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
# \file SaveFig.py
|
||||
# \brief TODO
|
||||
# \author Florent Guiotte <florent.guiotte@gmail.com>
|
||||
# \version 0.1
|
||||
# \date 09 avril 2018
|
||||
#
|
||||
# TODO details
|
||||
|
||||
from core import Output
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class ShowFig(Output):
|
||||
def __init__(self, fname, bbox_inches='tight', pad_inches=1):
|
||||
super().__init__(self.__class__.__name__)
|
||||
self.fname = fname
|
||||
self.bbox_inches = bbox_inches
|
||||
self.pad_inches = pad_inches
|
||||
|
||||
def _process(self, data, metadata):
|
||||
im_size = 2
|
||||
fig = plt.figure(figsize=(16*im_size,3*im_size))
|
||||
f1 = fig.add_subplot(111)
|
||||
img = f1.imshow(data[:,:,-1])
|
||||
plt.colorbar(img)
|
||||
if metadata is not None:
|
||||
f1.set_title(metadata[-1])
|
||||
plt.show()
|
||||
plt.close(fig)
|
||||
23
ld2dap/Treshold.py
Normal file
23
ld2dap/Treshold.py
Normal file
@ -0,0 +1,23 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
# \file Treshold.py
|
||||
# \brief TODO
|
||||
# \author Florent Guiotte <florent.guiotte@gmail.com>
|
||||
# \version 0.1
|
||||
# \date 09 avril 2018
|
||||
#
|
||||
# TODO details
|
||||
|
||||
from core import Filter
|
||||
|
||||
class Treshold(Filter):
|
||||
def __init__(self, treshold, max_value=None):
|
||||
super().__init__(self.__class__.__name__)
|
||||
self.treshold = treshold
|
||||
self.max_value = max_value #if max_value is not None else treshold
|
||||
|
||||
def _process(self, data, metadata):
|
||||
if self.max_value is None:
|
||||
self.max_value = data[data < self.treshold].max()
|
||||
|
||||
return data * (data < self.treshold) + self.max_value * (data >= self.treshold), metadata
|
||||
@ -17,7 +17,7 @@ class Node(object):
|
||||
return ("Node:{}".format(self.name))
|
||||
|
||||
def process(self, data, metadata=None):
|
||||
self._process(data)
|
||||
self._process(data, metadata)
|
||||
|
||||
def _process(self, data, metadata=None):
|
||||
raise NotImplementedError(
|
||||
|
||||
23
ld2dap/core/Stack.py
Normal file
23
ld2dap/core/Stack.py
Normal file
@ -0,0 +1,23 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
# \file %filename%.py
|
||||
# \brief TODO
|
||||
# \author Florent Guiotte <florent.guiotte@gmail.com>
|
||||
# \version 0.1
|
||||
# \date 11 avril 2018
|
||||
#
|
||||
# TODO details
|
||||
|
||||
|
||||
class Stack(object):
|
||||
def __init__(self, begin=0, size=1, desc=None, symb=None) :
|
||||
self.begin = begin
|
||||
self.end = begin + size
|
||||
self.desc = list()
|
||||
self.symb = list()
|
||||
|
||||
if desc is not None:
|
||||
self.desc.append(desc)
|
||||
|
||||
if symb is not None:
|
||||
self.symb.append(symb)
|
||||
@ -11,3 +11,4 @@
|
||||
from .Output import Output
|
||||
from .Input import Input
|
||||
from .Filter import Filter
|
||||
from .Stack import Stack
|
||||
|
||||
@ -8,19 +8,28 @@
|
||||
#
|
||||
# TODO details
|
||||
|
||||
from core import Input, Output, Filter
|
||||
#from core import Input, Output, Filter
|
||||
from LoadTIFF import LoadTIFF
|
||||
from AttributeProfiles import AttributeProfiles as APs
|
||||
from SaveFig import SaveFig
|
||||
from Treshold import Treshold
|
||||
from ShowFig import ShowFig
|
||||
|
||||
import numpy as np
|
||||
|
||||
def main():
|
||||
i = LoadTIFF(['../Data/test.tiff'])
|
||||
ap = APs()
|
||||
o = Output('o')
|
||||
i = LoadTIFF(['../Data/test.tiff', '../Data/test.tiff'])
|
||||
t = Treshold(1e4)
|
||||
ap = APs(np.array([100,1e3,1e4]))
|
||||
o = SaveFig('test.png')
|
||||
s = ShowFig(None)
|
||||
|
||||
ap.input = i
|
||||
o.input = i
|
||||
t.input = i
|
||||
ap.input = t
|
||||
o.input = ap
|
||||
s.input = ap
|
||||
|
||||
o.run()
|
||||
i.run()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user