Allow manual dtype, add Normalize node
This commit is contained in:
parent
9d1360fbe6
commit
fb0a423015
@ -29,7 +29,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"n = 3; d = 0"
|
||||
"n = 5; d = 0"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -63,10 +63,12 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"load = ld2dap.LoadTIFF(layers_files)\n",
|
||||
"#trsh = ld2dap.Treshold(1e4)\n",
|
||||
"trsh = ld2dap.Treshold(1e4)\n",
|
||||
"norm = ld2dap.Normalize(dtype=np.uint8)\n",
|
||||
"rout = ld2dap.RawOutput()\n",
|
||||
"\n",
|
||||
"rout.input = load\n",
|
||||
"rout.input = norm\n",
|
||||
"norm.input = trsh\n",
|
||||
"trsh.input = load\n",
|
||||
"\n",
|
||||
"rout.run()"
|
||||
@ -120,7 +122,7 @@
|
||||
"\n",
|
||||
"for cut in cuts:\n",
|
||||
" rinp = ld2dap.RawInput(cut, rout.metadata)\n",
|
||||
" aps = ld2dap.AttributeProfiles(area=[100,1e3,1e4])\n",
|
||||
" aps = ld2dap.SelfDualAttributeProfiles(area=[100,1e3,1e4,1e5], normalize_to_dtype=False)\n",
|
||||
" vout = ld2dap.RawOutput()\n",
|
||||
" \n",
|
||||
" vout.input = aps\n",
|
||||
@ -145,9 +147,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"descriptors = np.zeros(rout.data.shape[:2] + (dcuts[0].shape[-1],))\n",
|
||||
"view = np.moveaxis(descriptors, d, 0)\n",
|
||||
"\n",
|
||||
"for i, cut in enumerate(dcuts):\n",
|
||||
" descriptors[i*step:(i+1)*step+1] = cut"
|
||||
" view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -164,110 +167,12 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"t_inp = ld2dap.RawInput(descriptors, vout.metadata)\n",
|
||||
"t_dsp = ld2dap.ShowFig(stack_id=3, symb=True, fname='../Res/bands.png')\n",
|
||||
"t_dsp = ld2dap.ShowFig(stack_id=3, symb=False)\n",
|
||||
"\n",
|
||||
"t_dsp.input = t_inp\n",
|
||||
"\n",
|
||||
"t_dsp.run()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"descriptors.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dim = 5\n",
|
||||
"A = np.arange(64).reshape((4, 8, 2))\n",
|
||||
"A = A[:,:,np.newaxis] if A.ndim == 2 else A\n",
|
||||
"B = np.zeros(A.shape[:2] + (A.shape[2] * dim,))\n",
|
||||
"A.shape, B.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"step = int(A.shape[0] / n)\n",
|
||||
"cuts = list()\n",
|
||||
"\n",
|
||||
"for i in range(n):\n",
|
||||
" cut = A[i*step:(i+1)*step+1]\n",
|
||||
" cut = np.repeat(cut, dim, axis=2)\n",
|
||||
" cuts.append(cut)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for i, cut in enumerate(cuts):\n",
|
||||
" B[i*step:(i+1)*step+1] = cut\n",
|
||||
"B"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"cuts[0].shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"np.tile(A[:,:,np.newaxis], (1,1,10))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"A.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"np.repeat(A.reshape(, 2, axis=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
@ -42,6 +42,47 @@
|
||||
"disp.run()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"aps = ld2dap.SelfDualAttributeProfiles(area=[100, 1e3], normalize_to_dtype=False)\n",
|
||||
"\n",
|
||||
"aps.input = rinp\n",
|
||||
"disp.input = aps\n",
|
||||
"\n",
|
||||
"disp.run()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Try this new Normalize node !"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"load = ld2dap.LoadTIFF('../Data/phase1_rasters/Intensity_C1/UH17_GI1F051_TR.tif')\n",
|
||||
"trsh = ld2dap.Treshold(1e4)\n",
|
||||
"norm = ld2dap.Normalize(dtype=np.uint8)\n",
|
||||
"aps = ld2dap.SelfDualAttributeProfiles(area=[100, 1e3], normalize_to_dtype=False)\n",
|
||||
"disp = ld2dap.ShowFig(stack_id='all')\n",
|
||||
"\n",
|
||||
"disp.input = aps\n",
|
||||
"aps.input = norm\n",
|
||||
"norm.input = trsh\n",
|
||||
"trsh.input = load\n",
|
||||
"\n",
|
||||
"disp.run()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
@ -14,12 +14,13 @@ import numpy as np
|
||||
import triskele
|
||||
|
||||
class AttributeProfiles(Filter):
|
||||
def __init__(self, area=None, sd=None, moi=None):
|
||||
def __init__(self, area=None, sd=None, moi=None, normalize_to_dtype=True):
|
||||
super().__init__(self.__class__.__name__)
|
||||
self.logger.debug('Oh hi Mark!')
|
||||
self.area = np.sort(area) if area is not None else None
|
||||
self.sd = np.sort(sd) if sd is not None else None
|
||||
self.moi = np.sort(moi) if moi is not None else None
|
||||
self.normalize_to_dtype = normalize_to_dtype
|
||||
|
||||
def _process_desc(self):
|
||||
att_desc = dict()
|
||||
@ -64,13 +65,13 @@ class AttributeProfiles(Filter):
|
||||
def _process(self, data, metadata):
|
||||
self.logger.info('Compute Attribute Profiles on stack of size {}'.format(data.shape))
|
||||
|
||||
t = triskele.Triskele(data, verbose=False)
|
||||
t = triskele.Triskele(data, verbose=False, normalize_to_dtype=self.normalize_to_dtype)
|
||||
att_min = t.filter(tree='min-tree', area=self.area,
|
||||
standard_deviation=self.sd,
|
||||
moment_of_inertia=self.moi)
|
||||
standard_deviation=self.sd,
|
||||
moment_of_inertia=self.moi)
|
||||
att_max = t.filter(tree='max-tree', area=self.area,
|
||||
standard_deviation=self.sd,
|
||||
moment_of_inertia=self.moi)
|
||||
standard_deviation=self.sd,
|
||||
moment_of_inertia=self.moi)
|
||||
|
||||
## Merge filtering as APs
|
||||
|
||||
|
49
ld2dap/Normalize.py
Normal file
49
ld2dap/Normalize.py
Normal file
@ -0,0 +1,49 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
# \file Normalize.py
|
||||
# \brief TODO
|
||||
# \author Florent Guiotte <florent.guiotte@gmail.com>
|
||||
# \version 0.1
|
||||
# \date 12 sept. 2018
|
||||
#
|
||||
# TODO details
|
||||
|
||||
from ld2dap.core import Filter
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Normalize(Filter):
|
||||
"""Normalize stream values
|
||||
|
||||
This node will normalize values between min and max, unless dtype is
|
||||
provided.
|
||||
|
||||
If dtype is not None, min and max will be set to dtype extremum.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, min=0., max=1., dtype=None):
|
||||
super().__init__(self.__class__.__name__)
|
||||
|
||||
if dtype is not None:
|
||||
self.min = np.iinfo(dtype).min
|
||||
self.max = np.iinfo(dtype).max
|
||||
else:
|
||||
self.min = min
|
||||
self.max = max
|
||||
|
||||
def _process(self, data, metadata):
|
||||
self.logger.info('Filtering')
|
||||
# TODO: see TODO from Treshold _process
|
||||
|
||||
## Channel independant scale
|
||||
for i in range(data.shape[2]):
|
||||
data[:,:,i] -= data[:,:,i].min() - self.min
|
||||
data[:,:,i] *= (self.max - self.min) / (data[:,:,i].max() - data[:,:,i].min())
|
||||
|
||||
for stack in metadata:
|
||||
for d, s in zip(stack.desc, stack.symb):
|
||||
d.append('normalize [{}, {}]'.format(self.min, self.max))
|
||||
# s.append('T_{{{}}}'.format(self.treshold))
|
||||
|
||||
return data, metadata
|
@ -15,11 +15,12 @@ import triskele
|
||||
|
||||
|
||||
class SelfDualAttributeProfiles(Filter):
|
||||
def __init__(self, area=None, sd=None, moi=None):
|
||||
def __init__(self, area=None, sd=None, moi=None, normalize_to_dtype=True):
|
||||
super().__init__(self.__class__.__name__)
|
||||
self.area = np.sort(area) if area is not None else None
|
||||
self.sd = np.sort(sd) if sd is not None else None
|
||||
self.moi = np.sort(moi) if moi is not None else None
|
||||
self.normalize_to_dtype = normalize_to_dtype
|
||||
|
||||
def _process_desc(self):
|
||||
att_desc = dict()
|
||||
@ -58,7 +59,7 @@ class SelfDualAttributeProfiles(Filter):
|
||||
return att_len, att_len_cs
|
||||
|
||||
def _process(self, data, metadata):
|
||||
t = triskele.Triskele(data, verbose=False)
|
||||
t = triskele.Triskele(data, verbose=False, normalize_to_dtype=self.normalize_to_dtype)
|
||||
attributes = t.filter(tree='tos-tree', area=self.area,
|
||||
standard_deviation=self.sd,
|
||||
moment_of_inertia=self.moi)
|
||||
|
@ -21,6 +21,8 @@ class Treshold(Filter):
|
||||
def _process(self, data, metadata):
|
||||
# TODO: UPGRADE STACK DEPENDANCE
|
||||
# TODO: Verify if the previous TODO is up to date
|
||||
# TODO: It comes to mind that the hesitations expressed in the previous TODO are probably unfounded, as the previous previous TODO clearly states stacks, and no independants rasters
|
||||
|
||||
# This filter each raster independently
|
||||
self.logger.info('Filtering')
|
||||
|
||||
|
@ -19,3 +19,4 @@ from .ShowFig import ShowFig
|
||||
from .RawOutput import RawOutput
|
||||
from .RawInput import RawInput
|
||||
from .Differential import Differential
|
||||
from .Normalize import Normalize
|
||||
|
Loading…
Reference in New Issue
Block a user