{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "from pathlib import Path\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "triskele_path = Path('../triskele/python/')\n", "sys.path.append(str(triskele_path.resolve()))\n", "import triskele" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def show(im):\n", " plt.figure(figsize=(16*2,3*2))\n", " plt.imshow(im)\n", " plt.colorbar()\n", " plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## List raster files" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "layers_files = [\n", " '../Data/phase1_rasters/DEM+B_C123/UH17_GEM051_TR.tif',\n", " '../Data/phase1_rasters/DEM_C123_3msr/UH17_GEG051_TR.tif',\n", " '../Data/phase1_rasters/DEM_C123_TLI/UH17_GEG05_TR.tif',\n", " '../Data/phase1_rasters/DSM_C12/UH17c_GEF051_TR.tif',\n", " '../Data/phase1_rasters/Intensity_C1/UH17_GI1F051_TR.tif',\n", " '../Data/phase1_rasters/Intensity_C2/UH17_GI2F051_TR.tif',\n", " '../Data/phase1_rasters/Intensity_C3/UH17_GI3F051_TR.tif',\n", " #'../Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif'\n", "]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Define dataset dependent raster filtering" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def DFC_filter(raster):\n", " ## Remove extrem values\n", " #raster[raster == raster.max()] = raster[raster != raster.max()].max()\n", " raster[raster > 1e4] = raster[raster < 1e4].max()\n", " #raster[raster == np.finfo(raster.dtype).max] = raster[raster != raster.max()].max()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load rasters data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "layers = list()\n", "\n", "for file in layers_files:\n", " print('Loading {}'.format(file))\n", " layer = triskele.read(file)\n", " DFC_filter(layer)\n", " layers.append(layer)\n", "\n", "layers_stack = np.stack(layers, axis=2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Display rasters" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for i in range(layers_stack.shape[2]):\n", " plt.figure(figsize=(16*2,3*2))\n", " plt.imshow(layers_stack[:,:,i])\n", " plt.colorbar()\n", " plt.title(layers_files[i])\n", " plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Attributes filter with TRISKELE !" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "area = np.array([10, 100, 1e3, 1e4, 1e5])\n", "sd = np.array([0.5,0.9,0.99,0.999,0.9999])#,1e4,1e5,5e5])\n", "moi = np.array([0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99])\n", "\n", "t = triskele.Triskele(layers_stack[:,:,:], verbose=False)\n", "attributes = t.filter(tree='tos-tree',\n", " area=area,\n", " #standard_deviation=sd,\n", " #moment_of_inertia=moi\n", " )\n", "attributes.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "for i in range(attributes.shape[2]-1):\n", " plt.figure(figsize=(16*2,3*2))\n", " plt.imshow(attributes[:,:,i])\n", " plt.colorbar()\n", " plt.show()\n", " plt.figure(figsize=(16*2,3*2))\n", " plt.imshow(attributes[:,:,i+1].astype(np.float) - attributes[:,:,i])\n", " plt.colorbar()\n", " #plt.title(layers_files[i])\n", "plt.show()\n", "plt.figure(figsize=(16*2,3*2))\n", "plt.imshow(attributes[:,:,-1])\n", "plt.colorbar()\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.imshow((attributes[:,:,4].astype(np.float) - attributes[:,:,3])>0)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.imshow((attributes[:,:,4].astype(np.float) - attributes[:,:,3])<0)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "show((attributes[:,:,6].astype(np.float) - attributes[:,:,5]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "attributes[0,0,:] = 0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Classification vectors" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "X = attributes.reshape(-1, attributes.shape[2])\n", "\n", "(attributes[0,0] == X[0]).all()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "labels_file = Path('../Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif')\n", "labels = triskele.read(labels_file)\n", "display(labels.shape)\n", "\n", "plt.figure(figsize=(16*2,3*2))\n", "plt.imshow(labels)\n", "plt.colorbar()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Y = labels.reshape(-1)\n", "\n", "X.shape, Y.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Random Forest Classifier" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import importlib\n", "from sklearn import metrics\n", "from sklearn.ensemble import RandomForestClassifier\n", "import pickle\n", "sys.path.insert(0, '..')\n", "import CrossValidationGenerator as cvg" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "importlib.reload(cvg)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn import metrics\n", "import pandas as pd\n", "\n", "\n", "def scores(actual, prediction):\n", " ct = pd.crosstab(prediction, actual,\n", " rownames=['Prediction'], colnames=['Reference'],\n", " margins=True, margins_name='Total',\n", " normalize=False # all, index, columns\n", " )\n", " display(ct)\n", " \n", " scores = metrics.precision_recall_fscore_support(actual, prediction)\n", " print(metrics.classification_report(actual, prediction)) " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cv_labels = np.zeros(labels[:].shape)\n", "\n", "for xtrain, xtest, ytrain, ytest, train_index in cvg.CVG_legacy(attributes[:], labels[:], 10, 1): \n", " rfc = RandomForestClassifier(n_jobs=-1, random_state=0, n_estimators=100, verbose=True)\n", " rfc.fit(xtrain, ytrain)\n", " \n", " ypred = rfc.predict(xtest)\n", " \n", " display(ytest.shape, ypred.shape)\n", " \n", " scores(ytest, ypred)\n", " \n", " cv_labels[:,train_index == False] = ypred.reshape(cv_labels.shape[0], -1)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "show(labels)\n", "show(cv_labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.imsave('../Res/labels.png', labels)\n", "plt.imsave('../Res/prediction.png', cv_labels)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Scores" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "scores(actual=labels.reshape(-1), prediction=cv_labels.reshape(-1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Labels\n", "\n", "\n", " 0 – Unclassified\n", " 1 – Healthy grass\n", " 2 – Stressed grass\n", " 3 – Artificial turf\n", " 4 – Evergreen trees\n", " 5 – Deciduous trees\n", " 6 – Bare earth\n", " 7 – Water\n", " 8 – Residential buildings\n", " 9 – Non-residential buildings\n", " 10 – Roads\n", " 11 – Sidewalks\n", " 12 – Crosswalks\n", " 13 – Major thoroughfares\n", " 14 – Highways\n", " 15 – Railways\n", " 16 – Paved parking lots\n", " 17 – Unpaved parking lots\n", " 18 – Cars\n", " 19 – Trains\n", " 20 – Stadium seats\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 2 }