ld2daps/Notebooks/GDAL vs Matplotlib.ipynb
2018-03-22 07:43:35 +01:00

491 lines
9.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# GDAL vs Matplotlib (vs OpenCV vs LibTIFF)\n",
"\n",
"We have in data fusion contest dataset TIFF file with 32 bit per sample. For now TRISKELE only work with less than 17 bps: `BOOST_ASSERT (bits < 17);`. I want to ensure that we can oppen such data with Python.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import gdal\n",
"from pathlib import Path\n",
"import subprocess\n",
"import numpy as np\n",
"import pandas as pd\n",
"import cv2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"file = Path('../Data/phase1_rasters/DSM_C12/UH17c_GEF051_TR.tif')\n",
"ofile = Path('../Res/python_out.tif')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"info = subprocess.Popen(['tiffinfo', file], stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
"print(info.communicate()[0].decode())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mat_data = plt.imread(file)\n",
"mat_data.shape, mat_data.dtype"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gdl_data = gdal.Open(str(file))\n",
"gdl_data.GetMetadata(), gdl_data.RasterCount"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gdl_data.GetRasterBand(1).ReadAsArray().shape, gdl_data.GetRasterBand(1).ReadAsArray().dtype"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## There.\n",
"\n",
"`matplotlib` is derping around with bps. \n",
"\n",
"Maybe each byte is split `[a, b, c, d]` as $V = a 2^{24} + b 2^{16} + c 2^8 + d$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"(np.power(2, (np.arange(4)[::-1] * 8)) * mat_data).sum(axis=2).shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raster = gdl_data.GetRasterBand(1).ReadAsArray()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(32,9))\n",
"plt.imshow(raster)\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.hist(raster.reshape(-1), 100, log=True)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raster.max()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from ipywidgets import interact, interactive, fixed, interact_manual\n",
"import ipywidgets as widgets\n",
"\n",
"def disp(x):\n",
" display(x)\n",
" plt.figure(figsize=(32,9))\n",
" plt.imshow(raster * (raster < x))\n",
" plt.colorbar()\n",
" plt.show()\n",
" plt.hist(raster.reshape(-1) * (raster.reshape(-1) < x), 100, log=True)\n",
" plt.show()\n",
" \n",
"interact(disp, x=widgets.IntSlider(min=raster.min(),max=80,value=80));"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raster_df = pd.DataFrame(raster.reshape(-1))\n",
"raster_df.describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"rasterf = raster.copy()\n",
"rasterf[rasterf == rasterf.max()] = 0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"rasterf_df = pd.DataFrame(rasterf.reshape(-1))\n",
"rasterf_df.describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imshow(rasterf)\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Write TIFF file"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### OpenCV"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raster_cv2 = cv2.imread(str(file), -1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"(raster_cv2 != raster).sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"str(ofile)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ls ../Res"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"rasterf_im = np.expand_dims(rasterf, 2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cv2.imwrite(str(ofile), rasterf_im)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### GDAL"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gdl_data.RasterXSize"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cols = gdl_data.RasterXSize\n",
"rows = gdl_data.RasterYSize\n",
"\n",
"format = 'GTiff'\n",
"driver = gdal.GetDriverByName(format)\n",
"dst_ds = driver.Create(str(ofile), cols, rows, 1, gdal.GDT_Byte)\n",
"dst_ds.GetRasterBand(1).WriteArray(rasterf, 0, 0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dst_ds = None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Test "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!tiffinfo ../Res/python_out.tif"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imshow(rasterf)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_ofile = cv2.imread(str(ofile))\n",
"display(test_ofile.shape)\n",
"todf = pd.DataFrame(test_ofile.reshape(-1,3))\n",
"display(todf.describe())\n",
"plt.imshow(test_ofile[:,:,0])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## LibTiff\n",
"\n",
"### Write"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import libtiff\n",
"\n",
"tiff = libtiff.TIFFimage(rasterf.astype(np.float16), description='test')\n",
"tiff.write_file(ofile)#, compression='lzw')\n",
"del tiff"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!tiffinfo ../Res/python_out.tif"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ogdl_data = gdal.Open(str(ofile))\n",
"ogdl_data.GetMetadata(), ogdl_data.RasterCount"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"otest = ogdl_data.GetRasterBand(1).ReadAsArray()\n",
"otest.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imshow(otest)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"(otest != rasterf).sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Précision au millimètre :"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.isclose(otest, rasterf, rtol=1e-3).sum() / rasterf.size"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Read"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tiff_r = libtiff.TIFF.open(file, mode='r')\n",
"tiff_r.read_image().shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imshow(tiff_r.read_image())\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"(tiff_r.read_image() != raster).sum()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}