ld2daps/Notebooks/Custom rasters from LiDAR data.ipynb
2018-06-10 23:01:59 +02:00

213 lines
4.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import laspy\n",
"\n",
"figsize = (16, 9)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load LAS files data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def find_las(path):\n",
" print(path)\n",
" las = list()\n",
" \n",
" if path.is_dir():\n",
" for child in path.iterdir():\n",
" las.extend(find_las(child))\n",
" \n",
" if path.is_file() and path.suffix == '.las':\n",
" las.append(path)\n",
" \n",
" return las"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"files = ['../Data/lidar/C1/272056_3289689.las',\n",
" '../Data/lidar/C1/272652_3289689.las',\n",
" '../Data/lidar/C1/273248_3289689.las',\n",
" '../Data/lidar/C1/273844_3289689.las']\n",
"\n",
"folder = Path('../Data/lidar/')\n",
"files = find_las(folder)\n",
"\n",
"xdata = list()\n",
"ydata = list()\n",
"idata = list()\n",
"\n",
"for file in files:\n",
" infile = laspy.file.File(file)\n",
" print('file: {}, point count: {}'.format(file, infile.header.get_count()))\n",
" xdata.append(infile.x)\n",
" ydata.append(infile.y)\n",
" idata.append(infile.intensity)\n",
" \n",
"data = np.array((np.concatenate(xdata), np.concatenate(ydata), np.concatenate(idata))).T\n",
"data.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Display a 2D hist"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"resolution = 2\n",
"ground_size = np.array((data[:,0].max() - data[:,0].min(), data[:,1].max() - data[:,1].min()))\n",
"display(ground_size)\n",
"\n",
"bins = ground_size / resolution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=figsize)\n",
"hist, xedges, yedges = np.histogram2d(data[:,0], data[:,1], bins=bins)\n",
"plt.imshow(hist.T, origin='lower', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imsave('../Res/hist.png', hist.T, origin='lower')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Display intensity map"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=figsize)\n",
"hist_i, xedges, yedges = np.histogram2d(data[:,0], data[:,1], bins=bins, weights=data[:,2])\n",
"plt.imshow(hist_i.T / hist.T, origin='lower', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It seems that we have no data at this resolution. Should interpolate ?\n",
"\n",
"### Better intensity display"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"i = hist_i.T / hist.T\n",
"f = np.logical_not(np.isnan(i))\n",
"plt.hist(i[f], bins=1000)\n",
"plt.show()\n",
"\n",
"i[f].min(), i[f].max()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"imax_disp = 10000\n",
"\n",
"idisp = i\n",
"idisp[i > imax_disp] = imax_disp\n",
"\n",
"plt.figure(figsize=figsize)\n",
"plt.imshow(idisp, origin='lower', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imsave('../Res/hist_int.png', idisp, origin='lower')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.scatter(infile.x, infile.y)\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}