ld2daps/Notebooks/Triskel check.ipynb

192 lines
3.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"from pathlib import Path\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import laspy\n",
"\n",
"triskele_path = Path('../triskele/python/')\n",
"sys.path.append(str(triskele_path.resolve()))\n",
"import triskele\n",
"\n",
"figsize = (16, 3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Read and Write"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"R = np.random.random((1000,4000))\n",
"\n",
"plt.figure(figsize=figsize)\n",
"plt.imshow(R)\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"R.dtype"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## F64 "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"triskele.write('../Res/rw_test.tiff', R)\n",
"R2 = triskele.read('../Res/rw_test.tiff')\n",
"R2.dtype"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=figsize)\n",
"plt.imshow(R2)\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## F32"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=figsize)\n",
"plt.imshow(R.astype(np.float32))\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"triskele.write('../Res/rw_test.tiff', R.astype(np.float32))\n",
"R2 = triskele.read('../Res/rw_test.tiff')\n",
"R2.dtype"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=figsize)\n",
"plt.imshow(R2)\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Int32"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"R = np.random.random_integers(0, 10000, (1000,4000)).astype(np.int32)\n",
"\n",
"plt.figure(figsize=figsize)\n",
"plt.imshow(R)\n",
"plt.colorbar()\n",
"plt.show()\n",
"\n",
"R.dtype"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"triskele.write('../Res/rw_test.tiff', R)\n",
"R2 = triskele.read('../Res/rw_test.tiff')\n",
"R2.dtype"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=figsize)\n",
"plt.imshow(R2)\n",
"plt.colorbar()\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}