ld2daps/CrossValidationGenerator.py

51 lines
1.8 KiB
Python

#!/usr/bin/python
# -*- coding: utf-8 -*-
# \file CrossValidationGenerator.py
# \brief TODO
# \author Florent Guiotte <florent.guiotte@gmail.com>
# \version 0.1
# \date 28 Mar 2018
#
# TODO details
import numpy as np
class CVG:
def __init__(self, attributes, ground_truth, n_test=2, order_dim=0):
self._order = order_dim
self._ntests = n_test
self._actual_ntest = 0
self._size = attributes.shape[order_dim]
self._att = attributes
self._gt = ground_truth
if attributes.shape[0] != ground_truth.shape[0] or \
attributes.shape[1] != ground_truth.shape[1] :
raise ValueError('attributes and ground_truth must have the same 2D shape')
def __iter__(self):
return self
def __next__(self):
if self._actual_ntest == self._ntests:
raise StopIteration
step = self._size / self._ntests
train_filter = (np.arange(self._size) - step * self._actual_ntest) % self._size < step
if self._order == 0:
Xtrain = self._att[train_filter].reshape(-1, self._att.shape[2])
Xtest = self._att[train_filter == False].reshape(-1, self._att.shape[2])
Ytrain = self._gt[train_filter].reshape(-1)
Ytest = self._gt[train_filter == False].reshape(-1)
else:
Xtrain = self._att[:,train_filter].reshape(-1, self._att.shape[2])
Xtest = self._att[:,train_filter == False].reshape(-1, self._att.shape[2])
Ytrain = self._gt[:,train_filter].reshape(-1)
Ytest = self._gt[:,train_filter == False].reshape(-1)
self._actual_ntest += 1
return (Xtrain, Xtest, Ytrain, Ytest, train_filter)