420 lines
10 KiB
Plaintext
420 lines
10 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"from pathlib import Path\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"triskele_path = Path('../triskele/python/')\n",
|
|
"sys.path.append(str(triskele_path.resolve()))\n",
|
|
"import triskele"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## List raster files"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"layers_files = [\n",
|
|
" '../Data/phase1_rasters/DEM+B_C123/UH17_GEM051_TR.tif',\n",
|
|
" '../Data/phase1_rasters/DEM_C123_3msr/UH17_GEG051_TR.tif',\n",
|
|
" '../Data/phase1_rasters/DEM_C123_TLI/UH17_GEG05_TR.tif',\n",
|
|
" '../Data/phase1_rasters/DSM_C12/UH17c_GEF051_TR.tif',\n",
|
|
" '../Data/phase1_rasters/Intensity_C1/UH17_GI1F051_TR.tif',\n",
|
|
" '../Data/phase1_rasters/Intensity_C2/UH17_GI2F051_TR.tif',\n",
|
|
" '../Data/phase1_rasters/Intensity_C3/UH17_GI3F051_TR.tif',\n",
|
|
" #'../Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif'\n",
|
|
"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Define dataset dependent raster filtering"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def DFC_filter(raster):\n",
|
|
" ## Remove extrem values\n",
|
|
" #raster[raster == raster.max()] = raster[raster != raster.max()].max()\n",
|
|
" raster[raster > 1e4] = raster[raster < 1e4].max()\n",
|
|
" #raster[raster == np.finfo(raster.dtype).max] = raster[raster != raster.max()].max()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Load rasters data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"layers = list()\n",
|
|
"\n",
|
|
"for file in layers_files:\n",
|
|
" print('Loading {}'.format(file))\n",
|
|
" layer = triskele.read(file)\n",
|
|
" DFC_filter(layer)\n",
|
|
" layers.append(layer)\n",
|
|
"\n",
|
|
"layers_stack = np.stack(layers, axis=2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Display rasters"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for i in range(layers_stack.shape[2]):\n",
|
|
" plt.figure(figsize=(16*2,3*2))\n",
|
|
" plt.imshow(layers_stack[:,:,i])\n",
|
|
" plt.colorbar()\n",
|
|
" plt.title(layers_files[i])\n",
|
|
" plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Attributes filter with TRISKELE !"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"area = np.array([10, 100, 1e3, 1e4, 1e5])\n",
|
|
"sd = np.array([0.5,0.9,0.99,0.999,0.9999])#,1e4,1e5,5e5])\n",
|
|
"moi = np.array([0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99])\n",
|
|
"\n",
|
|
"t = triskele.Triskele(layers_stack[:,:,:], verbose=False)\n",
|
|
"attributes = t.filter(tree='tos-tree',\n",
|
|
" area=area,\n",
|
|
" standard_deviation=sd,\n",
|
|
" moment_of_inertia=moi\n",
|
|
" )\n",
|
|
"attributes.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"for i in range(attributes.shape[2]-1):\n",
|
|
" plt.figure(figsize=(16*2,3*2))\n",
|
|
" plt.imshow(attributes[:,:,i])\n",
|
|
" plt.colorbar()\n",
|
|
" plt.show()\n",
|
|
" plt.figure(figsize=(16*2,3*2))\n",
|
|
" plt.imshow(attributes[:,:,i+1].astype(np.float) - attributes[:,:,i])\n",
|
|
" plt.colorbar()\n",
|
|
" #plt.title(layers_files[i])\n",
|
|
"plt.show()\n",
|
|
"plt.figure(figsize=(16*2,3*2))\n",
|
|
"plt.imshow(attributes[:,:,-1])\n",
|
|
"plt.colorbar()\n",
|
|
"plt.show()\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Classification vectors"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"X = attributes.reshape(-1, attributes.shape[2])\n",
|
|
"\n",
|
|
"(attributes[0,0] == X[0]).all()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"labels_file = Path('../Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif')\n",
|
|
"labels = triskele.read(labels_file)\n",
|
|
"display(labels.shape)\n",
|
|
"\n",
|
|
"plt.figure(figsize=(16*2,3*2))\n",
|
|
"plt.imshow(labels)\n",
|
|
"plt.colorbar()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"Y = labels.reshape(-1)\n",
|
|
"\n",
|
|
"X.shape, Y.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Random Forest Classifier"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import importlib\n",
|
|
"from sklearn import metrics\n",
|
|
"from sklearn.ensemble import RandomForestClassifier\n",
|
|
"import pickle\n",
|
|
"sys.path.insert(0, '..')\n",
|
|
"import CrossValidationGenerator as cvg"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"importlib.reload(cvg)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sklearn import metrics\n",
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"\n",
|
|
"def scores(actual, prediction):\n",
|
|
" ct = pd.crosstab(prediction, actual,\n",
|
|
" rownames=['Prediction'], colnames=['Reference'],\n",
|
|
" margins=True, margins_name='Total',\n",
|
|
" normalize=False # all, index, columns\n",
|
|
" )\n",
|
|
" display(ct)\n",
|
|
" \n",
|
|
" scores = metrics.precision_recall_fscore_support(actual, prediction)\n",
|
|
" print(metrics.classification_report(actual, prediction)) "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cv_labels = np.zeros(labels[:].shape)\n",
|
|
"\n",
|
|
"for xtrain, xtest, ytrain, ytest, train_index in cvg.CVG(attributes[:], labels[:], 10, 1): \n",
|
|
" rfc = RandomForestClassifier(n_jobs=-1, random_state=0, n_estimators=100, verbose=True)\n",
|
|
" rfc.fit(xtrain, ytrain)\n",
|
|
" \n",
|
|
" ypred = rfc.predict(xtest)\n",
|
|
" \n",
|
|
" display(ytest.shape, ypred.shape)\n",
|
|
" \n",
|
|
" scores(ytest, ypred)\n",
|
|
" \n",
|
|
" cv_labels[:,train_index == False] = ypred.reshape(cv_labels.shape[0], -1)\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def show(im):\n",
|
|
" plt.figure(figsize=(16*2,3*2))\n",
|
|
" plt.imshow(im)\n",
|
|
" plt.colorbar()\n",
|
|
" plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"show(labels)\n",
|
|
"show(cv_labels)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"labels.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"np.arange(238400).reshape(-1, 4768)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open('../Res/classifier_0.pkl', 'wb') as f:\n",
|
|
" pickle.dump(rfc, f)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"Yp = Y.copy()\n",
|
|
"\n",
|
|
"Yp[training == False] = rfc.predict(X[training == False])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(16*2,3*2))\n",
|
|
"plt.imshow(Y.reshape(labels.shape))\n",
|
|
"plt.colorbar()\n",
|
|
"plt.show()\n",
|
|
"\n",
|
|
"plt.figure(figsize=(16*2,3*2))\n",
|
|
"plt.imshow(Yp.reshape(labels.shape))\n",
|
|
"plt.colorbar()\n",
|
|
"plt.show()\n",
|
|
"\n",
|
|
"plt.figure(figsize=(16*2,3*2))\n",
|
|
"plt.imshow(Yp.reshape(labels.shape).astype(np.float) - labels)\n",
|
|
"plt.colorbar()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"class cvg:\n",
|
|
" def __init__(self, attributes, ground_truth, order_dim=0, n_test=2): \n",
|
|
" self._tests_left = n_test\n",
|
|
" \n",
|
|
" if attributes.shape[0] != ground_truth.shape[0] or \\\n",
|
|
" attributes.shape[1] != ground_truth.shape[1] :\n",
|
|
" raise ValueError('attributes and ground_truth must have the same 2D shape')\n",
|
|
" \n",
|
|
" def __iter__(self):\n",
|
|
" return self\n",
|
|
" \n",
|
|
" def __next__(self):\n",
|
|
" if self._tests_left == 0:\n",
|
|
" raise StopIteration\n",
|
|
" \n",
|
|
" train_filter = np.arange(attributes.shape) < (Y.size * .50)\n",
|
|
"\n",
|
|
" Xtrain = 42\n",
|
|
" Xtest = 432\n",
|
|
" Ytrain = 12\n",
|
|
" Ytest = 123\n",
|
|
" \n",
|
|
" return (Xtrain, Xtest, Ytrain, Ytest)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cvg(attributes, labels[:,:-1])"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|