299 lines
5.9 KiB
Plaintext
299 lines
5.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Generic Classification Scores for DFC 2018"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"from sklearn import metrics\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"# Triskele\n",
|
|
"import sys\n",
|
|
"from pathlib import Path\n",
|
|
"triskele_path = Path('../triskele/python')\n",
|
|
"sys.path.append(str(triskele_path.resolve()))\n",
|
|
"import triskele\n",
|
|
"\n",
|
|
"figsize = np.array((16, 9))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Load Classes Metadata"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df_dfc_lbl = pd.read_csv('../labels.csv')\n",
|
|
"df_meta_idx = pd.read_csv('../metaclass_indexes.csv')\n",
|
|
"df_meta_lbl = pd.read_csv('../metaclass_labels.csv')\n",
|
|
"\n",
|
|
"df_dfc_lbl.merge(df_meta_idx).merge(df_meta_lbl)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"meta_idx = np.array(df_meta_idx['metaclass_index'], dtype=np.uint8)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Load Ground Truth and Prediction"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"gt = triskele.read('../Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif')\n",
|
|
"pred = triskele.read('../Res/tmppred.tif')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Display Classes"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig, (ax_gt, ax_pred) = plt.subplots(2, figsize=figsize * 2)\n",
|
|
"ax_gt.imshow(gt)\n",
|
|
"ax_gt.set_title('Ground Truth')\n",
|
|
"ax_pred.imshow(pred)\n",
|
|
"ax_pred.set_title('Prediction')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Display Meta Classes"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig, (ax_gt, ax_pred) = plt.subplots(2, figsize=figsize * 2)\n",
|
|
"ax_gt.imshow(meta_idx[gt])\n",
|
|
"ax_gt.set_title('Ground Truth')\n",
|
|
"ax_pred.imshow(meta_idx[pred])\n",
|
|
"ax_pred.set_title('Prediction')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Metrics\n",
|
|
"\n",
|
|
"### Classes\n",
|
|
"\n",
|
|
"#### Confusion"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"f = np.nonzero(pred)\n",
|
|
"pred_s = pred[f].flatten()\n",
|
|
"gt_s = gt[f].flatten()\n",
|
|
"\n",
|
|
"ct = pd.crosstab(gt_s, pred_s,\n",
|
|
" rownames=['Prediction'], colnames=['Reference'],\n",
|
|
" margins=True, margins_name='Total',\n",
|
|
" normalize=False # all, index, columns\n",
|
|
" )\n",
|
|
"ct"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Scores\n",
|
|
"\n",
|
|
"##### Accuracy"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"metrics.accuracy_score(gt_s, pred_s)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"##### Kappa"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"metrics.cohen_kappa_score(gt_s, pred_s)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"##### Precision, Recall, f1"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"metrics.precision_recall_fscore_support(gt_s, pred_s)\n",
|
|
"print(metrics.classification_report(gt_s, pred_s))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Meta Classes\n",
|
|
"\n",
|
|
"#### Confusion"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"f = np.nonzero(pred)\n",
|
|
"m_pred_s = meta_idx[pred_s]\n",
|
|
"m_gt_s = meta_idx[gt_s]\n",
|
|
"\n",
|
|
"ct = pd.crosstab(m_gt_s, m_pred_s,\n",
|
|
" rownames=['Prediction'], colnames=['Reference'],\n",
|
|
" margins=True, margins_name='Total',\n",
|
|
" normalize=False # all, index, columns\n",
|
|
" )\n",
|
|
"ct"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Scores\n",
|
|
"\n",
|
|
"##### Accuracy"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"metrics.accuracy_score(m_gt_s, m_pred_s)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"##### Kappa"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"metrics.cohen_kappa_score(m_gt_s, m_pred_s)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"##### Precision, Recall, f1"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"metrics.precision_recall_fscore_support(m_gt_s, m_pred_s)\n",
|
|
"print(metrics.classification_report(m_gt_s, m_pred_s))"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|