New DFC scripts with Split First

This commit is contained in:
Florent Guiotte 2018-09-14 16:30:05 +02:00
parent 2d6c399acd
commit 14e1d92c68
5 changed files with 150 additions and 54 deletions

View File

@ -1,8 +1,4 @@
import numpy as np
import yaml
import sys
sys.path.append('..')
import ld2dap
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):

View File

@ -9,33 +9,66 @@
# TODO details
import numpy as np
import sys
sys.path.append('..')
import ld2dap
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
# Parse parameters type
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
"""DFC Differential Attribute Profiles
Compute description vectors for parameters. Rasters can be splitted along
`split_dim` before description proceeds.
"""
# Parse attribute type
treshold = float(treshold)
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
sd = None if sd is None else np.array(sd).astype(np.float)
moi = None if moi is None else np.array(moi).astype(np.float)
# Pipelines
# Load and filter
loader = ld2dap.LoadTIFF(rasters)
dfc_filter = ld2dap.Treshold(treshold)
normalize = ld2dap.Normalize(dtype=np.uint8)
raw_out = ld2dap.RawOutput()
raw_out.input = normalize
normalize.input = dfc_filter
dfc_filter.input = loader
aps = ld2dap.AttributeProfiles(area=areas, sd=sd, moi=moi)
aps.input = dfc_filter
differential = ld2dap.Differential()
differential.input = aps
out_vectors = ld2dap.RawOutput()
out_vectors.input = differential
raw_out.run()
# Compute vectors
out_vectors.run()
# Split
n = split; d = split_dim
return out_vectors.data
step = int(raw_out.data.shape[d] / n)
view = np.moveaxis(raw_out.data, d, 0)
cuts = list()
for i in range(n):
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
cuts.append(cut)
# Describe
dcuts = list()
for cut in cuts:
rinp = ld2dap.RawInput(cut, raw_out.metadata)
aps = ld2dap.AttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
diff = ld2dap.Differential()
vout = ld2dap.RawOutput()
vout.input = diff
diff.input = aps
aps.input = rinp
vout.run()
dcuts.append(vout.data)
# Merge
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
view = np.moveaxis(descriptors, d, 0)
for i, cut in enumerate(dcuts):
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
return descriptors
def version():
return 'v0.0'

View File

@ -1,41 +1,74 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
# \file dfc_dsdaps.py
# \file dfc_daps.py
# \brief TODO
# \author Florent Guiotte <florent.guiotte@gmail.com>
# \version 0.1
# \date 28 août 2018
# \date 27 août 2018
#
# TODO details
import numpy as np
import sys
sys.path.append('..')
import ld2dap
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
# Parse parameters type
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
"""DFC Differential Self Dual Attribute Profiles
Compute description vectors for parameters. Rasters can be splitted along
`split_dim` before description proceeds.
"""
# Parse attribute type
treshold = float(treshold)
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
sd = None if sd is None else np.array(sd).astype(np.float)
moi = None if moi is None else np.array(moi).astype(np.float)
# Pipelines
# Load and filter
loader = ld2dap.LoadTIFF(rasters)
dfc_filter = ld2dap.Treshold(treshold)
normalize = ld2dap.Normalize(dtype=np.uint8)
raw_out = ld2dap.RawOutput()
raw_out.input = normalize
normalize.input = dfc_filter
dfc_filter.input = loader
sdaps = ld2dap.SelfDualAttributeProfiles(area=areas, sd=sd, moi=moi)
sdaps.input = dfc_filter
differential = ld2dap.Differential()
differential.input = sdaps
out_vectors = ld2dap.RawOutput()
out_vectors.input = differential
raw_out.run()
# Compute vectors
out_vectors.run()
# Split
n = split; d = split_dim
return out_vectors.data
step = int(raw_out.data.shape[d] / n)
view = np.moveaxis(raw_out.data, d, 0)
cuts = list()
for i in range(n):
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
cuts.append(cut)
# Describe
dcuts = list()
for cut in cuts:
rinp = ld2dap.RawInput(cut, raw_out.metadata)
aps = ld2dap.SelfDualAttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
diff = ld2dap.Differential()
vout = ld2dap.RawOutput()
vout.input = diff
diff.input = aps
aps.input = rinp
vout.run()
dcuts.append(vout.data)
# Merge
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
view = np.moveaxis(descriptors, d, 0)
for i, cut in enumerate(dcuts):
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
return descriptors
def version():
return 'v0.0'

View File

@ -9,32 +9,64 @@
# TODO details
import numpy as np
import sys
sys.path.append('..')
import ld2dap
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
# Parse parameters type
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
"""DFC Self Dual Attribute Profiles
Compute description vectors for parameters. Rasters can be splitted along
`split_dim` before description proceeds.
"""
# Parse attribute type
treshold = float(treshold)
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
sd = None if sd is None else np.array(sd).astype(np.float)
moi = None if moi is None else np.array(moi).astype(np.float)
# Pipelines
# Load and filter
loader = ld2dap.LoadTIFF(rasters)
dfc_filter = ld2dap.Treshold(treshold)
normalize = ld2dap.Normalize(dtype=np.uint8)
raw_out = ld2dap.RawOutput()
raw_out.input = normalize
normalize.input = dfc_filter
dfc_filter.input = loader
sdaps = ld2dap.SelfDualAttributeProfiles(area=areas, sd=sd, moi=moi)
sdaps.input = dfc_filter
out_vectors = ld2dap.RawOutput()
out_vectors.input = sdaps
raw_out.run()
# Compute vectors
out_vectors.run()
# Split
n = split; d = split_dim
return out_vectors.data
step = int(raw_out.data.shape[d] / n)
view = np.moveaxis(raw_out.data, d, 0)
cuts = list()
for i in range(n):
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
cuts.append(cut)
# Describe
dcuts = list()
for cut in cuts:
rinp = ld2dap.RawInput(cut, raw_out.metadata)
aps = ld2dap.SelfDualAttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
vout = ld2dap.RawOutput()
vout.input = aps
aps.input = rinp
vout.run()
dcuts.append(vout.data)
# Merge
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
view = np.moveaxis(descriptors, d, 0)
for i, cut in enumerate(dcuts):
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
return descriptors
def version():
return 'v0.0'

View File

@ -15,14 +15,16 @@ expe:
raster: ./Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif
meta_labels: ./Data/ground_truth/jurse_meta_idx.csv
descriptors_script:
name: descriptors.dfc_aps
name: descriptors.dfc_sdaps
parameters:
split: 5
split: 4
areas:
- 100
- 1000
- 1e4
moi:
- 0.5
- 0.7
- 0.9
rasters:
- ./Data/dfc_rasters/DEM+B_C123/UH17_GEM051_TR.tif
@ -32,12 +34,12 @@ expe:
name: Split
package: cvgenerators.jurse
parameters:
n_test: 5
n_test: 4
classifier:
name: RandomForestClassifier
package: sklearn.ensemble
parameters:
min_samples_leaf: 10
n_estimators: 10
n_estimators: 100
n_jobs: -1
random_state: 0