New DFC scripts with Split First
This commit is contained in:
parent
2d6c399acd
commit
14e1d92c68
@ -1,8 +1,4 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import yaml
|
|
||||||
|
|
||||||
import sys
|
|
||||||
sys.path.append('..')
|
|
||||||
import ld2dap
|
import ld2dap
|
||||||
|
|
||||||
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
|
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
|
||||||
|
|||||||
@ -9,33 +9,66 @@
|
|||||||
# TODO details
|
# TODO details
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import sys
|
|
||||||
sys.path.append('..')
|
|
||||||
import ld2dap
|
import ld2dap
|
||||||
|
|
||||||
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
|
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
|
||||||
# Parse parameters type
|
"""DFC Differential Attribute Profiles
|
||||||
|
|
||||||
|
Compute description vectors for parameters. Rasters can be splitted along
|
||||||
|
`split_dim` before description proceeds.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Parse attribute type
|
||||||
treshold = float(treshold)
|
treshold = float(treshold)
|
||||||
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
|
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
|
||||||
sd = None if sd is None else np.array(sd).astype(np.float)
|
sd = None if sd is None else np.array(sd).astype(np.float)
|
||||||
moi = None if moi is None else np.array(moi).astype(np.float)
|
moi = None if moi is None else np.array(moi).astype(np.float)
|
||||||
|
|
||||||
# Pipelines
|
# Load and filter
|
||||||
loader = ld2dap.LoadTIFF(rasters)
|
loader = ld2dap.LoadTIFF(rasters)
|
||||||
dfc_filter = ld2dap.Treshold(treshold)
|
dfc_filter = ld2dap.Treshold(treshold)
|
||||||
|
normalize = ld2dap.Normalize(dtype=np.uint8)
|
||||||
|
raw_out = ld2dap.RawOutput()
|
||||||
|
|
||||||
|
raw_out.input = normalize
|
||||||
|
normalize.input = dfc_filter
|
||||||
dfc_filter.input = loader
|
dfc_filter.input = loader
|
||||||
aps = ld2dap.AttributeProfiles(area=areas, sd=sd, moi=moi)
|
raw_out.run()
|
||||||
aps.input = dfc_filter
|
|
||||||
differential = ld2dap.Differential()
|
|
||||||
differential.input = aps
|
|
||||||
out_vectors = ld2dap.RawOutput()
|
|
||||||
out_vectors.input = differential
|
|
||||||
|
|
||||||
# Compute vectors
|
# Split
|
||||||
out_vectors.run()
|
n = split; d = split_dim
|
||||||
|
|
||||||
return out_vectors.data
|
step = int(raw_out.data.shape[d] / n)
|
||||||
|
view = np.moveaxis(raw_out.data, d, 0)
|
||||||
|
cuts = list()
|
||||||
|
for i in range(n):
|
||||||
|
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
|
||||||
|
cuts.append(cut)
|
||||||
|
|
||||||
|
# Describe
|
||||||
|
dcuts = list()
|
||||||
|
for cut in cuts:
|
||||||
|
rinp = ld2dap.RawInput(cut, raw_out.metadata)
|
||||||
|
aps = ld2dap.AttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
|
||||||
|
diff = ld2dap.Differential()
|
||||||
|
vout = ld2dap.RawOutput()
|
||||||
|
|
||||||
|
vout.input = diff
|
||||||
|
diff.input = aps
|
||||||
|
aps.input = rinp
|
||||||
|
vout.run()
|
||||||
|
|
||||||
|
dcuts.append(vout.data)
|
||||||
|
|
||||||
|
# Merge
|
||||||
|
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
|
||||||
|
view = np.moveaxis(descriptors, d, 0)
|
||||||
|
|
||||||
|
for i, cut in enumerate(dcuts):
|
||||||
|
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
|
||||||
|
|
||||||
|
return descriptors
|
||||||
|
|
||||||
def version():
|
def version():
|
||||||
return 'v0.0'
|
return 'v0.0'
|
||||||
|
|||||||
@ -1,41 +1,74 @@
|
|||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
# \file dfc_dsdaps.py
|
# \file dfc_daps.py
|
||||||
# \brief TODO
|
# \brief TODO
|
||||||
# \author Florent Guiotte <florent.guiotte@gmail.com>
|
# \author Florent Guiotte <florent.guiotte@gmail.com>
|
||||||
# \version 0.1
|
# \version 0.1
|
||||||
# \date 28 août 2018
|
# \date 27 août 2018
|
||||||
#
|
#
|
||||||
# TODO details
|
# TODO details
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import sys
|
|
||||||
sys.path.append('..')
|
|
||||||
import ld2dap
|
import ld2dap
|
||||||
|
|
||||||
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
|
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
|
||||||
# Parse parameters type
|
"""DFC Differential Self Dual Attribute Profiles
|
||||||
|
|
||||||
|
Compute description vectors for parameters. Rasters can be splitted along
|
||||||
|
`split_dim` before description proceeds.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Parse attribute type
|
||||||
treshold = float(treshold)
|
treshold = float(treshold)
|
||||||
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
|
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
|
||||||
sd = None if sd is None else np.array(sd).astype(np.float)
|
sd = None if sd is None else np.array(sd).astype(np.float)
|
||||||
moi = None if moi is None else np.array(moi).astype(np.float)
|
moi = None if moi is None else np.array(moi).astype(np.float)
|
||||||
|
|
||||||
# Pipelines
|
# Load and filter
|
||||||
loader = ld2dap.LoadTIFF(rasters)
|
loader = ld2dap.LoadTIFF(rasters)
|
||||||
dfc_filter = ld2dap.Treshold(treshold)
|
dfc_filter = ld2dap.Treshold(treshold)
|
||||||
|
normalize = ld2dap.Normalize(dtype=np.uint8)
|
||||||
|
raw_out = ld2dap.RawOutput()
|
||||||
|
|
||||||
|
raw_out.input = normalize
|
||||||
|
normalize.input = dfc_filter
|
||||||
dfc_filter.input = loader
|
dfc_filter.input = loader
|
||||||
sdaps = ld2dap.SelfDualAttributeProfiles(area=areas, sd=sd, moi=moi)
|
raw_out.run()
|
||||||
sdaps.input = dfc_filter
|
|
||||||
differential = ld2dap.Differential()
|
|
||||||
differential.input = sdaps
|
|
||||||
out_vectors = ld2dap.RawOutput()
|
|
||||||
out_vectors.input = differential
|
|
||||||
|
|
||||||
# Compute vectors
|
# Split
|
||||||
out_vectors.run()
|
n = split; d = split_dim
|
||||||
|
|
||||||
return out_vectors.data
|
step = int(raw_out.data.shape[d] / n)
|
||||||
|
view = np.moveaxis(raw_out.data, d, 0)
|
||||||
|
cuts = list()
|
||||||
|
for i in range(n):
|
||||||
|
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
|
||||||
|
cuts.append(cut)
|
||||||
|
|
||||||
|
# Describe
|
||||||
|
dcuts = list()
|
||||||
|
for cut in cuts:
|
||||||
|
rinp = ld2dap.RawInput(cut, raw_out.metadata)
|
||||||
|
aps = ld2dap.SelfDualAttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
|
||||||
|
diff = ld2dap.Differential()
|
||||||
|
vout = ld2dap.RawOutput()
|
||||||
|
|
||||||
|
vout.input = diff
|
||||||
|
diff.input = aps
|
||||||
|
aps.input = rinp
|
||||||
|
vout.run()
|
||||||
|
|
||||||
|
dcuts.append(vout.data)
|
||||||
|
|
||||||
|
# Merge
|
||||||
|
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
|
||||||
|
view = np.moveaxis(descriptors, d, 0)
|
||||||
|
|
||||||
|
for i, cut in enumerate(dcuts):
|
||||||
|
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
|
||||||
|
|
||||||
|
return descriptors
|
||||||
|
|
||||||
def version():
|
def version():
|
||||||
return 'v0.0'
|
return 'v0.0'
|
||||||
|
|||||||
@ -9,32 +9,64 @@
|
|||||||
# TODO details
|
# TODO details
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import sys
|
|
||||||
sys.path.append('..')
|
|
||||||
import ld2dap
|
import ld2dap
|
||||||
|
|
||||||
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
|
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
|
||||||
# Parse parameters type
|
"""DFC Self Dual Attribute Profiles
|
||||||
|
|
||||||
|
Compute description vectors for parameters. Rasters can be splitted along
|
||||||
|
`split_dim` before description proceeds.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Parse attribute type
|
||||||
treshold = float(treshold)
|
treshold = float(treshold)
|
||||||
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
|
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
|
||||||
sd = None if sd is None else np.array(sd).astype(np.float)
|
sd = None if sd is None else np.array(sd).astype(np.float)
|
||||||
moi = None if moi is None else np.array(moi).astype(np.float)
|
moi = None if moi is None else np.array(moi).astype(np.float)
|
||||||
|
|
||||||
# Pipelines
|
# Load and filter
|
||||||
loader = ld2dap.LoadTIFF(rasters)
|
loader = ld2dap.LoadTIFF(rasters)
|
||||||
dfc_filter = ld2dap.Treshold(treshold)
|
dfc_filter = ld2dap.Treshold(treshold)
|
||||||
|
normalize = ld2dap.Normalize(dtype=np.uint8)
|
||||||
|
raw_out = ld2dap.RawOutput()
|
||||||
|
|
||||||
|
raw_out.input = normalize
|
||||||
|
normalize.input = dfc_filter
|
||||||
dfc_filter.input = loader
|
dfc_filter.input = loader
|
||||||
sdaps = ld2dap.SelfDualAttributeProfiles(area=areas, sd=sd, moi=moi)
|
raw_out.run()
|
||||||
sdaps.input = dfc_filter
|
|
||||||
out_vectors = ld2dap.RawOutput()
|
|
||||||
out_vectors.input = sdaps
|
|
||||||
|
|
||||||
# Compute vectors
|
# Split
|
||||||
out_vectors.run()
|
n = split; d = split_dim
|
||||||
|
|
||||||
return out_vectors.data
|
step = int(raw_out.data.shape[d] / n)
|
||||||
|
view = np.moveaxis(raw_out.data, d, 0)
|
||||||
|
cuts = list()
|
||||||
|
for i in range(n):
|
||||||
|
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
|
||||||
|
cuts.append(cut)
|
||||||
|
|
||||||
|
# Describe
|
||||||
|
dcuts = list()
|
||||||
|
for cut in cuts:
|
||||||
|
rinp = ld2dap.RawInput(cut, raw_out.metadata)
|
||||||
|
aps = ld2dap.SelfDualAttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
|
||||||
|
vout = ld2dap.RawOutput()
|
||||||
|
|
||||||
|
vout.input = aps
|
||||||
|
aps.input = rinp
|
||||||
|
vout.run()
|
||||||
|
|
||||||
|
dcuts.append(vout.data)
|
||||||
|
|
||||||
|
# Merge
|
||||||
|
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
|
||||||
|
view = np.moveaxis(descriptors, d, 0)
|
||||||
|
|
||||||
|
for i, cut in enumerate(dcuts):
|
||||||
|
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
|
||||||
|
|
||||||
|
return descriptors
|
||||||
|
|
||||||
def version():
|
def version():
|
||||||
return 'v0.0'
|
return 'v0.0'
|
||||||
|
|
||||||
|
|||||||
@ -15,14 +15,16 @@ expe:
|
|||||||
raster: ./Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif
|
raster: ./Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif
|
||||||
meta_labels: ./Data/ground_truth/jurse_meta_idx.csv
|
meta_labels: ./Data/ground_truth/jurse_meta_idx.csv
|
||||||
descriptors_script:
|
descriptors_script:
|
||||||
name: descriptors.dfc_aps
|
name: descriptors.dfc_sdaps
|
||||||
parameters:
|
parameters:
|
||||||
split: 5
|
split: 4
|
||||||
areas:
|
areas:
|
||||||
- 100
|
- 100
|
||||||
- 1000
|
- 1000
|
||||||
|
- 1e4
|
||||||
moi:
|
moi:
|
||||||
- 0.5
|
- 0.5
|
||||||
|
- 0.7
|
||||||
- 0.9
|
- 0.9
|
||||||
rasters:
|
rasters:
|
||||||
- ./Data/dfc_rasters/DEM+B_C123/UH17_GEM051_TR.tif
|
- ./Data/dfc_rasters/DEM+B_C123/UH17_GEM051_TR.tif
|
||||||
@ -32,12 +34,12 @@ expe:
|
|||||||
name: Split
|
name: Split
|
||||||
package: cvgenerators.jurse
|
package: cvgenerators.jurse
|
||||||
parameters:
|
parameters:
|
||||||
n_test: 5
|
n_test: 4
|
||||||
classifier:
|
classifier:
|
||||||
name: RandomForestClassifier
|
name: RandomForestClassifier
|
||||||
package: sklearn.ensemble
|
package: sklearn.ensemble
|
||||||
parameters:
|
parameters:
|
||||||
min_samples_leaf: 10
|
min_samples_leaf: 10
|
||||||
n_estimators: 10
|
n_estimators: 100
|
||||||
n_jobs: -1
|
n_jobs: -1
|
||||||
random_state: 0
|
random_state: 0
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user