Finish bib and add default pdf for HAL
This commit is contained in:
parent
bcbbbed574
commit
96879bb257
@ -41,9 +41,11 @@
|
|||||||
booktitle = {Mathematical Morphology and Its Applications to Signal and Image Processing},
|
booktitle = {Mathematical Morphology and Its Applications to Signal and Image Processing},
|
||||||
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
||||||
date = {2019-05},
|
date = {2019-05},
|
||||||
|
shortjournal = {ISMM},
|
||||||
pages = {391--402},
|
pages = {391--402},
|
||||||
doi = {10.1007/978-3-030-20867-7\_30},
|
doi = {10.1007/978-3-030-20867-7\_30},
|
||||||
url = {https://hal.archives-ouvertes.fr/hal-02343890},
|
url = {https://hal.archives-ouvertes.fr/hal-02343890},
|
||||||
|
abstract = {This paper deals with morphological characterization of un-structured 3D point clouds issued from LiDAR data. A large majority of studies first rasterize 3D point clouds onto regular 2D grids and then use standard 2D image processing tools for characterizing data. In this paper, we suggest instead to keep the 3D structure as long as possible in the process. To this end, as raw LiDAR point clouds are unstructured, we first propose some voxelization strategies and then extract some morphological features on voxel data. The results obtained with attribute filtering show the ability of this process to efficiently extract useful information .},
|
||||||
hal_id = {hal-02343890},
|
hal_id = {hal-02343890},
|
||||||
hal_version = {v1},
|
hal_version = {v1},
|
||||||
pdf = {https://hal.archives-ouvertes.fr/hal-02343890/file/ismm2019.pdf},
|
pdf = {https://hal.archives-ouvertes.fr/hal-02343890/file/ismm2019.pdf},
|
||||||
@ -56,9 +58,11 @@
|
|||||||
title = {Filtrage et classification de nuage de points sur la base d'attributs morphologiques},
|
title = {Filtrage et classification de nuage de points sur la base d'attributs morphologiques},
|
||||||
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
||||||
date = {2019},
|
date = {2019},
|
||||||
journaltitle = {Journées francophones des jeunes chercheurs en vision par ordinateur (ORASIS)},
|
journaltitle = {Journées francophones des jeunes chercheurs en vision par ordinateur},
|
||||||
|
shortjournal = {ORASIS},
|
||||||
pages = {9},
|
pages = {9},
|
||||||
abstract = {This paper deals with morphological characterization of unstructured 3D point clouds issued from LiDAR data. A large majority of studies first rasterize 3D point clouds onto regular 2D grids and then use standard 2D image processing tools for characterizing data. In this paper, we suggest instead to keep the 3D structure as long as possible in the process. To this end, as raw LiDAR point clouds are unstructured, we first propose some voxelization strategies and then extract some morphological features on voxel data. The results obtained with attribute filtering show the ability of this process to efficiently extract useful information.},
|
abstract = {Cet article traite de l’analyse de données LiDAR via la caractérisation morphologique des nuages de points qui en résultent. Tandis que la majorité de travaux effectuent en premier lieu une «rasterisation» (transformation du nuage de point en données 2D structurées en pixels) et utilisent ensuite des outils d’analyse d’images, nous proposons ici de garder le plus longtemps possible la structure 3D (en y calculant des caractéristiques) et de structurer les données le plus tard possible. En pratique, une étape de voxelisation des données brutes est opérée afin d’utiliser des outils mathématiques définis sur des volumes réguliers. Ensuite, nous utilisons des représentations hiérarchiques pour caractériser ces voxels. Pour illustrer les intérêts d’une telle approche, plusieurs applications sont proposées, notamment le débruitage, le filtrage et la classification des nuages de points},
|
||||||
|
hal_id = {hal-02343933},
|
||||||
langid = {french},
|
langid = {french},
|
||||||
keywords = {mine},
|
keywords = {mine},
|
||||||
annotation = {00000},
|
annotation = {00000},
|
||||||
@ -75,6 +79,8 @@
|
|||||||
pages = {1203--1209},
|
pages = {1203--1209},
|
||||||
doi = {10.5194/isprs-archives-XLIII-B2-2020-1203-2020},
|
doi = {10.5194/isprs-archives-XLIII-B2-2020-1203-2020},
|
||||||
url = {https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1203/2020/},
|
url = {https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1203/2020/},
|
||||||
|
abstract = {The use of high-resolution digital terrain model derived from airborne LiDAR system becomes more and more prevalent. Effective multi-scale structure characterization is of crucial importance for various domains such as geosciences, archaeology and Earth observation. This paper deals with structure detection in large datasets with little or no prior knowledge. In a recent work, we have demonstrated the relevance of hierarchical representations to enhance the description of digital elevation models (Guiotte et al., 2019). In this paper, we proceed further and use the pattern spectrum, a multi-scale tool originating from mathematical morphology, further enhanced by hierarchical representations. The pattern spectra allow to globally and efficiently compute the distribution of size and shapes of the objects contained in a digital elevation model. The tree-based pattern spectra used in this paper allowed us to analyse and extract features of interest. We report experiments in a natural environment with two use cases, related to gold panning and dikes respectively. The process is fast enough to allow interactive analysis.},
|
||||||
|
hal_id = {hal-03065475},
|
||||||
keywords = {dtm,mine},
|
keywords = {dtm,mine},
|
||||||
annotation = {0 citations (Crossref) [2021-06-10] 00000},
|
annotation = {0 citations (Crossref) [2021-06-10] 00000},
|
||||||
file = {/home/florent/.zotero/data/storage/CX6TK8BC/Guiotte et al. - 2020 - Interactive Digital Terrain Model Analysis in Attr.pdf}
|
file = {/home/florent/.zotero/data/storage/CX6TK8BC/Guiotte et al. - 2020 - Interactive Digital Terrain Model Analysis in Attr.pdf}
|
||||||
@ -82,13 +88,16 @@
|
|||||||
|
|
||||||
@inproceedings{GuiotteRasterization2019,
|
@inproceedings{GuiotteRasterization2019,
|
||||||
title = {Rasterization Strategies for Airborne {{LiDAR}} Classification Using Attribute Profiles},
|
title = {Rasterization Strategies for Airborne {{LiDAR}} Classification Using Attribute Profiles},
|
||||||
booktitle = {2019 {{Joint Urban Remote Sensing Event}} ({{JURSE}})},
|
booktitle = {2019 {{Joint Urban Remote Sensing Event}}},
|
||||||
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
||||||
date = {2019},
|
date = {2019},
|
||||||
|
shortjournal = {JURSE},
|
||||||
pages = {1--4},
|
pages = {1--4},
|
||||||
publisher = {{IEEE}},
|
publisher = {{IEEE}},
|
||||||
doi = {10.1109/JURSE.2019.8808945},
|
doi = {10.1109/JURSE.2019.8808945},
|
||||||
url = {https://hal.archives-ouvertes.fr/hal-02343901/document},
|
url = {https://hal.archives-ouvertes.fr/hal-02343901/document},
|
||||||
|
abstract = {This paper evaluates rasterization strategies and the benefit of hierarchical representations, in particular attribute profiles, to classify urban scenes issued from multispectral LiDAR acquisitions. In recent years it has been found that rasterized LiDAR provides a reliable source of information on its own or for fusion with multispectral/hyperspectral imagery. However previous works using attribute profiles on LiDAR rely on elevation data only. Our approach focuses on several LiDAR features rasterized with multilevel description to produce precise land cover maps over urban areas. Our experimental results obtained with LiDAR data from university of Houston indicate good classification results for alternative rasters and even more when multilevel image descriptions are used.},
|
||||||
|
hal_id = {hal-02343901v2},
|
||||||
keywords = {ISMM,mine},
|
keywords = {ISMM,mine},
|
||||||
annotation = {2 citations (Crossref) [2021-06-10] 00000},
|
annotation = {2 citations (Crossref) [2021-06-10] 00000},
|
||||||
file = {/home/florent/.zotero/data/storage/RCPIJU9B/Guiotte et al. - Rasterization strategies for airborne LiDAR classi.pdf}
|
file = {/home/florent/.zotero/data/storage/RCPIJU9B/Guiotte et al. - Rasterization strategies for airborne LiDAR classi.pdf}
|
||||||
@ -98,11 +107,14 @@
|
|||||||
title = {Relation {{Network}} for {{Full-waveforms LiDAR Classification}}},
|
title = {Relation {{Network}} for {{Full-waveforms LiDAR Classification}}},
|
||||||
author = {Guiotte, F. and Rao, M. B. and Lefèvre, S. and Tang, P. and Corpetti, T.},
|
author = {Guiotte, F. and Rao, M. B. and Lefèvre, S. and Tang, P. and Corpetti, T.},
|
||||||
date = {2020},
|
date = {2020},
|
||||||
journaltitle = {ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
|
journaltitle = {International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
|
||||||
|
shortjournal = {ISPRS},
|
||||||
volume = {XLIII-B3-2020},
|
volume = {XLIII-B3-2020},
|
||||||
pages = {515--520},
|
pages = {515--520},
|
||||||
doi = {10.5194/isprs-archives-XLIII-B3-2020-515-2020},
|
doi = {10.5194/isprs-archives-XLIII-B3-2020-515-2020},
|
||||||
url = {https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/515/2020/},
|
url = {https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/515/2020/},
|
||||||
|
abstract = {LiDAR data are widely used in various domains related to geosciences (flow, erosion, rock deformations, etc.), computer graphics (3D reconstruction) or earth observation (detection of trees, roads, buildings, etc.). Because of the unstructured nature of remaining 3D points and because of the cost of acquisition, the LiDAR data processing is still challenging (few learning data, difficult spatial neighboring relationships, etc.). In practice, one can directly analyze the 3D points using feature extraction and then classify the points via machine learning techniques (Brodu, Lague, 2012, Niemeyer et al., 2014, Mallet et al., 2011). In addition, recent neural network developments have allowed precise point cloud segmentation, especially using the seminal pointnet network and its extensions (Qi et al., 2017a, Riegler et al., 2017). Other authors rather prefer to rasterize / voxelize the point cloud and use more conventional computers vision strategies to analyze structures (Lodha et al., 2006). In a recent work, we demonstrated that Digital Elevation Models (DEM) is reductive of the vertical component complexity describing objects in urban environments (Guiotte et al., 2020). These results highlighted the necessity to preserve the 3D structure of the point cloud as long as possible in the processing. In this paper, we therefore rely on ortho-waveforms to compute a land cover map. Ortho-waveforms are directly computed from the waveforms in a regular 3D grid. This method provides volumes somehow "similar" to hyperspectral data where each pixel is here associated with one ortho-waveform. Then, we exploit efficient neural networks adapted to the classification of hyperspectral data when few samples are available. Our results, obtained on the 2018 Data Fusion Contest dataset (DFC), demonstrate the efficiency of the approach.},
|
||||||
|
hal_id = {hal-03045729},
|
||||||
keywords = {mine},
|
keywords = {mine},
|
||||||
annotation = {0 citations (Crossref) [2021-06-10] 00000},
|
annotation = {0 citations (Crossref) [2021-06-10] 00000},
|
||||||
file = {/home/florent/.zotero/data/storage/VBX3GYM4/Guiotte et al. - 2020 - RELATION NETWORK FOR FULL-WAVEFORMS LIDAR CLASSIFI.pdf}
|
file = {/home/florent/.zotero/data/storage/VBX3GYM4/Guiotte et al. - 2020 - RELATION NETWORK FOR FULL-WAVEFORMS LIDAR CLASSIFI.pdf}
|
||||||
@ -113,9 +125,11 @@
|
|||||||
author = {Guiotte, Florent and Pham, Minh-Tan and Dambreville, Romain and Corpetti, Thomas and Lefèvre, Sébastien},
|
author = {Guiotte, Florent and Pham, Minh-Tan and Dambreville, Romain and Corpetti, Thomas and Lefèvre, Sébastien},
|
||||||
date = {2020-01},
|
date = {2020-01},
|
||||||
journaltitle = {IEEE Geoscience and Remote Sensing Letters},
|
journaltitle = {IEEE Geoscience and Remote Sensing Letters},
|
||||||
|
shortjournal = {GRSL},
|
||||||
publisher = {{IEEE - Institute of Electrical and Electronics Engineers}},
|
publisher = {{IEEE - Institute of Electrical and Electronics Engineers}},
|
||||||
doi = {10.1109/LGRS.2019.2958858},
|
doi = {10.1109/LGRS.2019.2958858},
|
||||||
url = {https://hal.archives-ouvertes.fr/hal-02399410},
|
url = {https://hal.archives-ouvertes.fr/hal-02399410},
|
||||||
|
abstract = {LiDAR point clouds are receiving a growing interest in remote sensing as they provide rich information to be used independently or together with optical data sources such as aerial imagery. However, their non-structured and sparse nature make them difficult to handle, conversely to raw imagery for which many efficient tools are available. To overcome this specific nature of LiDAR point clouds, standard approaches often rely in converting the point cloud into a digital elevation model, represented as a 2D raster. Such a raster can then be used similarly as optical images, e.g. with 2D convolutional neural networks for semantic segmentation. In this letter, we show that LiDAR point clouds provide more information than only the DEM, and that considering alternative rasterization strategies helps to achieve better semantic segmentation results. We illustrate our findings on the IEEE DFC 2018 dataset.},
|
||||||
hal_id = {hal-02399410},
|
hal_id = {hal-02399410},
|
||||||
hal_version = {v1},
|
hal_version = {v1},
|
||||||
pdf = {https://hal.archives-ouvertes.fr/hal-02399410/file/grsl.pdf},
|
pdf = {https://hal.archives-ouvertes.fr/hal-02399410/file/grsl.pdf},
|
||||||
@ -129,9 +143,11 @@
|
|||||||
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
||||||
date = {2019},
|
date = {2019},
|
||||||
journaltitle = {Colloque GRETSI sur le Traitement du Signal et des Images},
|
journaltitle = {Colloque GRETSI sur le Traitement du Signal et des Images},
|
||||||
|
shortjournal = {GRETSI},
|
||||||
pages = {5},
|
pages = {5},
|
||||||
abstract = {This paper evaluates rasterization strategies and the benefit of hierarchical representations (in particular attribute profiles) to classify point clouds. When such data comes from LiDAR acquisitions, a rasterization process if often performed to build an elevation map (possibly used together with multi or hyperspectral images). While some works use attribute profiles on such elevation data, we rather focus here on several LiDAR features rasterized and on their multilevel description to produce accurate land cover maps over urban areas. Our experimental results obtained on LiDAR data from the university of Houston indicate good classification results based on our rasters.},
|
abstract = {Cet article traite de rastérisation par représentations hiérarchiques (en particulier via les profils d'attributs mor-phologiques) de nuages de points 3D. Lorsque ces données proviennent d'appareils LiDAR, il est fréquent de les rastériser pour fournir une carte d'élévation (exploitée seule ou combinée avec des images multi-ou hyperspectrales). Bien que certains travaux utilisent des profils d'attributs sur de telles données d'élévation, nous mettons ici l'accent sur plusieurs caractéristiques LiDAR rastérisées (liées aux échos, retours d'onde, etc.) et sur une description multi-échelle pour produire des cartes d'occupation du sol précises sur des zones urbaines. Nos résultats expérimentaux obtenus avec les données LiDAR de l'université de Houston indiquent de bons résultats de classification en exploitant nos rasters.},
|
||||||
bibtex_show = {true},
|
bibtex_show = {true},
|
||||||
|
hal_id = {hal-02343958},
|
||||||
langid = {french},
|
langid = {french},
|
||||||
keywords = {lidar,mine},
|
keywords = {lidar,mine},
|
||||||
annotation = {00000},
|
annotation = {00000},
|
||||||
@ -140,15 +156,16 @@
|
|||||||
|
|
||||||
@inproceedings{GuiotteVoxelbased2019,
|
@inproceedings{GuiotteVoxelbased2019,
|
||||||
title = {Voxel-Based Attribute Profiles on Lidar Data for Land Cover Mapping},
|
title = {Voxel-Based Attribute Profiles on Lidar Data for Land Cover Mapping},
|
||||||
booktitle = {{{IEEE}} International Geosciences and Remote Sensing Symposium ({{IGARSS}})},
|
booktitle = {{{IEEE}} International Geosciences and Remote Sensing Symposium},
|
||||||
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
author = {Guiotte, Florent and Lefèvre, Sébastien and Corpetti, Thomas},
|
||||||
date = {2019},
|
date = {2019},
|
||||||
|
shortjournal = {IGARSS},
|
||||||
location = {{Yokohama, Japan}},
|
location = {{Yokohama, Japan}},
|
||||||
doi = {10.1109/IGARSS.2019.8899129},
|
doi = {10.1109/IGARSS.2019.8899129},
|
||||||
url = {https://hal.archives-ouvertes.fr/hal-02343963},
|
url = {https://hal.archives-ouvertes.fr/hal-02343963},
|
||||||
|
abstract = {This paper deals with strategies for LiDAR data analysis. While a large majority of studies first rasterize 3D point clouds onto regular 2D grids and then use 2D image processing tools for characterizing data, our work rather suggests to keep as long as possible the 3D structure by computing features on 3D data and rasterize later in the process. By this way, the vertical component is still taken into account. In practice, a voxelization step of raw data is performed in order to exploit mathematical tools defined on regular volumes. More precisely, we focus on attribute profiles that have been shown to be very efficient features to characterize remote sensing scenes. They require the computation of an underlying hierarchical structure (through a Max-Tree). Experimental results obtained on urban LiDAR data classification support the performances of this strategy compared with an early rasterization process.},
|
||||||
hal_id = {hal-02343963},
|
hal_id = {hal-02343963},
|
||||||
hal_version = {v1},
|
hal_version = {v1},
|
||||||
pdf = {https://hal.archives-ouvertes.fr/hal-02343963/file/igarss2019florent.pdf},
|
|
||||||
keywords = {attribute profiles,land cover mapping,max-tree,mine,multiscale representation,voxelization},
|
keywords = {attribute profiles,land cover mapping,max-tree,mine,multiscale representation,voxelization},
|
||||||
annotation = {0 citations (Crossref) [2021-06-10] 00000},
|
annotation = {0 citations (Crossref) [2021-06-10] 00000},
|
||||||
file = {/home/florent/.zotero/data/storage/65K47AUD/Guiotte et al. - 2019 - Voxel-based attribute profiles on LiDAR data for l.pdf}
|
file = {/home/florent/.zotero/data/storage/65K47AUD/Guiotte et al. - 2019 - Voxel-based attribute profiles on LiDAR data for l.pdf}
|
||||||
@ -169,6 +186,7 @@
|
|||||||
doi = {10.1109/JSTARS.2022.3182030},
|
doi = {10.1109/JSTARS.2022.3182030},
|
||||||
abstract = {Despite the popularity of deep neural networks in various domains, the extraction of digital terrain models (DTMs) from airborne laser scanning (ALS) point clouds is still challenging. This might be due to the lack of the dedicated large-scale annotated dataset and the data-structure discrepancy between point clouds and DTMs. To promote data-driven DTM extraction, this article collects from open sources a large-scale dataset of ALS point clouds and corresponding DTMs with various urban, forested, and mountainous scenes. A baseline method is proposed as the first attempt to train a deep neural network to extract DTMs directly from ALS point clouds via rasterization techniques, coined DeepTerRa. Extensive studies with well-established methods are performed to benchmark the dataset and analyze the challenges in learning to extract DTM from point clouds. The experimental results show the interest of the agnostic data-driven approach, with submetric error level compared to methods designed for DTM extraction. The data and source code are available online at https://lhoangan.github.io/deepterra/ for reproducibility and further similar research.},
|
abstract = {Despite the popularity of deep neural networks in various domains, the extraction of digital terrain models (DTMs) from airborne laser scanning (ALS) point clouds is still challenging. This might be due to the lack of the dedicated large-scale annotated dataset and the data-structure discrepancy between point clouds and DTMs. To promote data-driven DTM extraction, this article collects from open sources a large-scale dataset of ALS point clouds and corresponding DTMs with various urban, forested, and mountainous scenes. A baseline method is proposed as the first attempt to train a deep neural network to extract DTMs directly from ALS point clouds via rasterization techniques, coined DeepTerRa. Extensive studies with well-established methods are performed to benchmark the dataset and analyze the challenges in learning to extract DTM from point clouds. The experimental results show the interest of the agnostic data-driven approach, with submetric error level compared to methods designed for DTM extraction. The data and source code are available online at https://lhoangan.github.io/deepterra/ for reproducibility and further similar research.},
|
||||||
archiveprefix = {arXiv},
|
archiveprefix = {arXiv},
|
||||||
|
code = {https://github.com/lhoangan/6P},
|
||||||
eventtitle = {{{IEEE Journal}} of {{Selected Topics}} in {{Applied Earth Observations}} and {{Remote Sensing}}},
|
eventtitle = {{{IEEE Journal}} of {{Selected Topics}} in {{Applied Earth Observations}} and {{Remote Sensing}}},
|
||||||
hal_id = {hal-03717178},
|
hal_id = {hal-03717178},
|
||||||
pdf = {https://arxiv.org/pdf/2206.03778.pdf},
|
pdf = {https://arxiv.org/pdf/2206.03778.pdf},
|
||||||
@ -183,6 +201,7 @@
|
|||||||
author = {Maia, Deise Santana and Pham, Minh-Tan and Aptoula, Erchan and Guiotte, Florent and Lefèvre, Sébastien},
|
author = {Maia, Deise Santana and Pham, Minh-Tan and Aptoula, Erchan and Guiotte, Florent and Lefèvre, Sébastien},
|
||||||
date = {2021-09},
|
date = {2021-09},
|
||||||
journaltitle = {IEEE Geoscience and Remote Sensing Magazine},
|
journaltitle = {IEEE Geoscience and Remote Sensing Magazine},
|
||||||
|
shortjournal = {GRSM},
|
||||||
volume = {9},
|
volume = {9},
|
||||||
number = {3},
|
number = {3},
|
||||||
pages = {43--71},
|
pages = {43--71},
|
||||||
@ -190,6 +209,8 @@
|
|||||||
doi = {10.1109/MGRS.2021.3051859},
|
doi = {10.1109/MGRS.2021.3051859},
|
||||||
abstract = {Morphological attribute profiles (APs) are among the most prominent methods for spatial–spectral pixel analysis of remote sensing images. Since their introduction a decade ago to tackle land cover classification, many studies have been contributed to the state of the art, focusing not only on their application to a wider range of tasks but also on their performance improvement and extension to more complex Earth observation data.},
|
abstract = {Morphological attribute profiles (APs) are among the most prominent methods for spatial–spectral pixel analysis of remote sensing images. Since their introduction a decade ago to tackle land cover classification, many studies have been contributed to the state of the art, focusing not only on their application to a wider range of tasks but also on their performance improvement and extension to more complex Earth observation data.},
|
||||||
eventtitle = {{{IEEE Geoscience}} and {{Remote Sensing Magazine}}},
|
eventtitle = {{{IEEE Geoscience}} and {{Remote Sensing Magazine}}},
|
||||||
|
hal_id = {hal-03199357},
|
||||||
|
pdf = {https://hal.science/hal-03199357v1/document},
|
||||||
keywords = {attribute profiles,mine},
|
keywords = {attribute profiles,mine},
|
||||||
annotation = {00010},
|
annotation = {00010},
|
||||||
file = {/home/florent/.zotero/data/storage/6WDRKG9L/Maia et al. - 2021 - Classification of Remote Sensing Data With Morphol.pdf;/home/florent/.zotero/data/storage/ZHLN4422/Maia et al. - 2021 - Classification of Remote Sensing Data With Morphol.pdf;/home/florent/.zotero/data/storage/YASAD9GI/9366293.html}
|
file = {/home/florent/.zotero/data/storage/6WDRKG9L/Maia et al. - 2021 - Classification of Remote Sensing Data With Morphol.pdf;/home/florent/.zotero/data/storage/ZHLN4422/Maia et al. - 2021 - Classification of Remote Sensing Data With Morphol.pdf;/home/florent/.zotero/data/storage/YASAD9GI/9366293.html}
|
||||||
|
@ -12,3 +12,19 @@
|
|||||||
color: "#00529c"
|
color: "#00529c"
|
||||||
url: https://www.grss-ieee.org/publications/journal-of-selected-topics-in-applied-earth-observations-and-remote-sensing/
|
url: https://www.grss-ieee.org/publications/journal-of-selected-topics-in-applied-earth-observations-and-remote-sensing/
|
||||||
|
|
||||||
|
"GRSM":
|
||||||
|
color: "#00529c"
|
||||||
|
url: https://www.grss-ieee.org/publications/geoscience-and-remote-sensing-magazine/
|
||||||
|
|
||||||
|
"ISMM":
|
||||||
|
color: "#aa1439"
|
||||||
|
url: https://tc18.org/
|
||||||
|
|
||||||
|
"JURSE":
|
||||||
|
url: http://jurse.org/
|
||||||
|
|
||||||
|
"GRETSI":
|
||||||
|
url: http://gretsi.fr/
|
||||||
|
|
||||||
|
"IGARSS":
|
||||||
|
url: http://www.classic.grss-ieee.org/igarss/
|
||||||
|
@ -138,7 +138,7 @@
|
|||||||
<!-- Links/Buttons -->
|
<!-- Links/Buttons -->
|
||||||
<div class="links">
|
<div class="links">
|
||||||
{%- if entry.abstract %}
|
{%- if entry.abstract %}
|
||||||
<a class="abstract btn btn-sm z-depth-0" role="button">Abs</a>
|
<a class="abstract btn btn-sm z-depth-0" role="button">Abstract</a>
|
||||||
{%- endif %}
|
{%- endif %}
|
||||||
{%- if site.bibtex_show %}
|
{%- if site.bibtex_show %}
|
||||||
<a class="bibtex btn btn-sm z-depth-0" role="button">Bib</a>
|
<a class="bibtex btn btn-sm z-depth-0" role="button">Bib</a>
|
||||||
@ -160,6 +160,8 @@
|
|||||||
{%- else -%}
|
{%- else -%}
|
||||||
<a href="{{ entry.pdf | prepend: '/assets/pdf/' | relative_url }}" class="btn btn-sm z-depth-0" role="button">PDF</a>
|
<a href="{{ entry.pdf | prepend: '/assets/pdf/' | relative_url }}" class="btn btn-sm z-depth-0" role="button">PDF</a>
|
||||||
{%- endif %}
|
{%- endif %}
|
||||||
|
{%- else if entry.hal_id %}
|
||||||
|
<a href="https://hal.science/{{ entry.hal_id }}/document" class="btn btn-sm z-depth-0" role="button">PDF</a>
|
||||||
{%- endif %}
|
{%- endif %}
|
||||||
{%- if entry.supp %}
|
{%- if entry.supp %}
|
||||||
{% if entry.supp contains '://' -%}
|
{% if entry.supp contains '://' -%}
|
||||||
|
Loading…
Reference in New Issue
Block a user