ld2daps/Notebooks/Node Treshold.ipynb
2018-05-10 13:04:04 +02:00

254 lines
4.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Node Treshold Design\n",
"\n",
"We want to apply the treshold filter on the whole stack of rasters, but filter each raster independently."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"from pathlib import Path\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import collections\n",
"\n",
"ld2dap_path = Path('../')\n",
"sys.path.append(str(ld2dap_path.resolve()))\n",
"import ld2dap\n",
"from ld2dap.core import Filter"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load and display 2 rasters with different order of magnitude"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"rasters = ['../Data/phase1_rasters/Intensity_C1/UH17_GI1F051_TR.tif',\n",
" '../Data/phase1_rasters/DEM_C123_3msr/UH17_GEG051_TR.tif']\n",
"\n",
"in_test = ld2dap.LoadTIFF(rasters)\n",
"disp_test = ld2dap.ShowFig(stack_id='all')\n",
"\n",
"disp_test.input = in_test\n",
"disp_test.run()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Metadata copy bug"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tresh_test = ld2dap.Treshold(treshold=1e4)\n",
"tresh2_test = ld2dap.Treshold(treshold=1e3)\n",
"\n",
"o = ld2dap.RawOutput()\n",
"\n",
"in_test = ld2dap.LoadTIFF(rasters)\n",
"tresh_test.input = in_test\n",
"tresh2_test.input = tresh_test\n",
"disp_test.input = tresh_test\n",
"o.input = in_test\n",
"\n",
"\n",
"disp_test.run()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### New treshold"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"o.data.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"o.data.max(axis=(0,1)).shape, o.data.max(axis=(0,1))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"t = 1e3\n",
"\n",
"o.run()\n",
"f = o.data > t\n",
"o.data[f] = np.nan\n",
"m = np.nanmax(o.data, axis=(0,1))\n",
"r = f.sum(axis=(0,1))\n",
"\n",
"display(m, r)\n",
"\n",
"o.data = np.rollaxis(o.data, 2)\n",
"f = np.rollaxis(f, 2)\n",
"\n",
"o.data[f] = np.repeat(m, r)\n",
"o.data = np.rollaxis(o.data, 0, 3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"o.data.max(axis=(0,1))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = np.zeros((10,20,2))\n",
"display(A.shape)\n",
"\n",
"A = np.rollaxis(A, 2)\n",
"display(A.shape)\n",
"\n",
"A = np.rollaxis(A,0,3)\n",
"A.shape\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = np.zeros((10,10,2))\n",
"A[:,:,1] = 1\n",
"\n",
"F = np.random.random((10,10,2)) < .2\n",
"\n",
"r = F.sum(axis=(0,1))\n",
"m = np.array([10, 20])\n",
"\n",
"A = np.rollaxis(A, 2)\n",
"F = np.rollaxis(F, 2)\n",
"\n",
"A[F] = np.repeat(m, r)\n",
"\n",
"A = np.rollaxis(A, 0, 3)\n",
"A\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"want = f.sum(axis=(0,1))\n",
"want"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.repeat(np.nanmax(o.data, axis=(0,1)), f.sum(axis=(0,1)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f.any()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"o.data[f] = 0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.tile(m, (2,1))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}