minigrida/descriptors/dfc_dsdaps.py

75 lines
2.0 KiB
Python

#!/usr/bin/python
# -*- coding: utf-8 -*-
# \file dfc_daps.py
# \brief TODO
# \author Florent Guiotte <florent.guiotte@gmail.com>
# \version 0.1
# \date 27 août 2018
#
# TODO details
import numpy as np
import ld2dap
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
"""DFC Differential Self Dual Attribute Profiles
Compute description vectors for parameters. Rasters can be splitted along
`split_dim` before description proceeds.
"""
# Parse attribute type
treshold = float(treshold)
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
sd = None if sd is None else np.array(sd).astype(np.float)
moi = None if moi is None else np.array(moi).astype(np.float)
# Load and filter
loader = ld2dap.LoadTIFF(rasters)
dfc_filter = ld2dap.Treshold(treshold)
normalize = ld2dap.Normalize(dtype=np.uint8)
raw_out = ld2dap.RawOutput()
raw_out.input = normalize
normalize.input = dfc_filter
dfc_filter.input = loader
raw_out.run()
# Split
n = split; d = split_dim
step = int(raw_out.data.shape[d] / n)
view = np.moveaxis(raw_out.data, d, 0)
cuts = list()
for i in range(n):
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
cuts.append(cut)
# Describe
dcuts = list()
for cut in cuts:
rinp = ld2dap.RawInput(cut, raw_out.metadata)
aps = ld2dap.SelfDualAttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
diff = ld2dap.Differential()
vout = ld2dap.RawOutput()
vout.input = diff
diff.input = aps
aps.input = rinp
vout.run()
dcuts.append(vout.data)
# Merge
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
view = np.moveaxis(descriptors, d, 0)
for i, cut in enumerate(dcuts):
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
return descriptors
def version():
return 'v0.0'