Merge branch 'develop'

This commit is contained in:
Florent Guiotte 2018-09-14 16:46:28 +02:00
commit 347dec5e51
7 changed files with 350 additions and 67 deletions

0
cvgenerators/__init__.py Normal file
View File

150
cvgenerators/jurse.py Normal file
View File

@ -0,0 +1,150 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
# \file CrossValidationGenerator.py
# \brief TODO
# \author Florent Guiotte <florent.guiotte@gmail.com>
# \version 0.1
# \date 28 Mar 2018
#
# TODO details
import numpy as np
import ipdb
class Split:
"""Geographic split cross validation generator.
Split `n_test` times along given dimension. One split is for test, the
others are used in training.
If used with a split first description, make sure you use compatible
settings.
"""
def __init__(self, ground_truth, attributes, n_test=2, order_dim=0, remove_unclassified=True):
self._att = attributes
self._gt = ground_truth
self._n = n_test
self._d = order_dim
self._s = 0
self._r = remove_unclassified
self._size = ground_truth.shape[order_dim]
self._step = int(ground_truth.shape[order_dim] / n_test)
def __iter__(self):
return self
def __next__(self):
if self._s == self._n:
raise StopIteration
cfilter = (np.arange(self._size) - self._step * self._s) % self._size < self._step
test_index = np.zeros_like(self._gt, dtype=np.bool)
view = np.moveaxis(test_index, self._d, 0)
view[cfilter] = True
unclassified = self._gt == 0
train_index = ~test_index & ~unclassified
if self._r:
test_index &= ~unclassified
#ipdb.set_trace()
xtrain = self._att[train_index]
xtest = self._att[test_index]
ytrain = self._gt[train_index]
ytest = self._gt[test_index]
self._s += 1
return xtrain, xtest, ytrain, ytest, test_index
class CVG_legacy:
def __init__(self, attributes, ground_truth, n_test=2, order_dim=0):
self._order = order_dim
self._ntests = n_test
self._actual_ntest = 0
self._size = attributes.shape[order_dim]
self._att = attributes
self._gt = ground_truth
if attributes.shape[0] != ground_truth.shape[0] or \
attributes.shape[1] != ground_truth.shape[1] :
raise ValueError('attributes and ground_truth must have the same 2D shape')
def __iter__(self):
return self
def __next__(self):
if self._actual_ntest == self._ntests:
raise StopIteration
step = self._size / self._ntests
train_filter = (np.arange(self._size) - step * self._actual_ntest) % self._size < step
if self._order == 0:
Xtrain = self._att[train_filter].reshape(-1, self._att.shape[2])
Xtest = self._att[train_filter == False].reshape(-1, self._att.shape[2])
Ytrain = self._gt[train_filter].reshape(-1)
Ytest = self._gt[train_filter == False].reshape(-1)
else:
Xtrain = self._att[:,train_filter].reshape(-1, self._att.shape[2])
Xtest = self._att[:,train_filter == False].reshape(-1, self._att.shape[2])
Ytrain = self._gt[:,train_filter].reshape(-1)
Ytest = self._gt[:,train_filter == False].reshape(-1)
self._actual_ntest += 1
return (Xtrain, Xtest, Ytrain, Ytest, train_filter)
class APsCVG:
"""Cross Validation Generator for Attribute Profiles Descriptors"""
def __init__(self, ground_truth, attributes, n_test=5, label_ignore=None):
self._gt = ground_truth
self._att = attributes
self._cv_count = n_test
self._actual_count = 0
if attributes.shape[0] != ground_truth.shape[0] or \
attributes.shape[1] != ground_truth.shape[1] :
raise ValueError('attributes and ground_truth must have the same 2D shape')
def __iter__(self):
return self
def __next__(self):
if self._cv_count == self._actual_count:
raise StopIteration
split_map = semantic_cvg(self._gt, self._cv_count, self._actual_count)
xtrain = self._att[split_map == 1].reshape(-1, self._att.shape[2])
xtest = self._att[split_map == 2].reshape(-1, self._att.shape[2])
ytrain = self._gt[split_map == 1].reshape(-1)
ytest = self._gt[split_map == 2].reshape(-1)
test_index = split_map == 2
self._actual_count += 1
return xtrain, xtest, ytrain, ytest, test_index
def semantic_cvg(gt, nb_split, step=0):
count = np.unique(gt, return_counts=True)
test_part = 1 / nb_split
split = np.zeros_like(gt)
for lbli, lblc in zip(count[0][1:], count[1][1:]):
treshold = int(lblc * test_part)
#print('lbli:{}, count:{}, train:{}'.format(lbli, lblc, treshold))
f = np.nonzero(gt == lbli)
t_int, t_ext = treshold * step, treshold * (step + 1)
split[f[0], f[1]] = 1
split[f[0][t_int:t_ext], f[1][t_int:t_ext]] = 2
return split

View File

@ -1,30 +1,62 @@
import numpy as np
import yaml
import sys
sys.path.append('..')
import ld2dap
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
"""DFC Attribute Profiles
Compute description vectors for parameters. Rasters can be splitted along
`split_dim` before description proceeds.
"""
# Parse attribute type
treshold = float(treshold)
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
sd = None if sd is None else np.array(sd).astype(np.float)
moi = None if moi is None else np.array(moi).astype(np.float)
# APs Pipelines
# Load and filter
loader = ld2dap.LoadTIFF(rasters)
dfc_filter = ld2dap.Treshold(treshold)
dfc_filter.input = loader
aps = ld2dap.AttributeProfiles(area=areas, sd=sd, moi=moi)
aps.input = dfc_filter
out_vectors = ld2dap.RawOutput()
out_vectors.input = aps
normalize = ld2dap.Normalize(dtype=np.uint8)
raw_out = ld2dap.RawOutput()
# Compute vectors
out_vectors.run()
return out_vectors.data
raw_out.input = normalize
normalize.input = dfc_filter
dfc_filter.input = loader
raw_out.run()
# Split
n = split; d = split_dim
step = int(raw_out.data.shape[d] / n)
view = np.moveaxis(raw_out.data, d, 0)
cuts = list()
for i in range(n):
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
cuts.append(cut)
# Describe
dcuts = list()
for cut in cuts:
rinp = ld2dap.RawInput(cut, raw_out.metadata)
aps = ld2dap.AttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
vout = ld2dap.RawOutput()
vout.input = aps
aps.input = rinp
vout.run()
dcuts.append(vout.data)
# Merge
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
view = np.moveaxis(descriptors, d, 0)
for i, cut in enumerate(dcuts):
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
return descriptors
def version():
return 'v0.0'
return 'v0.0'

View File

@ -9,33 +9,66 @@
# TODO details
import numpy as np
import sys
sys.path.append('..')
import ld2dap
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
# Parse parameters type
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
"""DFC Differential Attribute Profiles
Compute description vectors for parameters. Rasters can be splitted along
`split_dim` before description proceeds.
"""
# Parse attribute type
treshold = float(treshold)
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
sd = None if sd is None else np.array(sd).astype(np.float)
moi = None if moi is None else np.array(moi).astype(np.float)
# Pipelines
# Load and filter
loader = ld2dap.LoadTIFF(rasters)
dfc_filter = ld2dap.Treshold(treshold)
normalize = ld2dap.Normalize(dtype=np.uint8)
raw_out = ld2dap.RawOutput()
raw_out.input = normalize
normalize.input = dfc_filter
dfc_filter.input = loader
aps = ld2dap.AttributeProfiles(area=areas, sd=sd, moi=moi)
aps.input = dfc_filter
differential = ld2dap.Differential()
differential.input = aps
out_vectors = ld2dap.RawOutput()
out_vectors.input = differential
raw_out.run()
# Compute vectors
out_vectors.run()
# Split
n = split; d = split_dim
return out_vectors.data
step = int(raw_out.data.shape[d] / n)
view = np.moveaxis(raw_out.data, d, 0)
cuts = list()
for i in range(n):
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
cuts.append(cut)
# Describe
dcuts = list()
for cut in cuts:
rinp = ld2dap.RawInput(cut, raw_out.metadata)
aps = ld2dap.AttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
diff = ld2dap.Differential()
vout = ld2dap.RawOutput()
vout.input = diff
diff.input = aps
aps.input = rinp
vout.run()
dcuts.append(vout.data)
# Merge
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
view = np.moveaxis(descriptors, d, 0)
for i, cut in enumerate(dcuts):
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
return descriptors
def version():
return 'v0.0'

View File

@ -1,41 +1,74 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
# \file dfc_dsdaps.py
# \file dfc_daps.py
# \brief TODO
# \author Florent Guiotte <florent.guiotte@gmail.com>
# \version 0.1
# \date 28 août 2018
# \date 27 août 2018
#
# TODO details
import numpy as np
import sys
sys.path.append('..')
import ld2dap
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
# Parse parameters type
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
"""DFC Differential Self Dual Attribute Profiles
Compute description vectors for parameters. Rasters can be splitted along
`split_dim` before description proceeds.
"""
# Parse attribute type
treshold = float(treshold)
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
sd = None if sd is None else np.array(sd).astype(np.float)
moi = None if moi is None else np.array(moi).astype(np.float)
# Pipelines
# Load and filter
loader = ld2dap.LoadTIFF(rasters)
dfc_filter = ld2dap.Treshold(treshold)
normalize = ld2dap.Normalize(dtype=np.uint8)
raw_out = ld2dap.RawOutput()
raw_out.input = normalize
normalize.input = dfc_filter
dfc_filter.input = loader
sdaps = ld2dap.SelfDualAttributeProfiles(area=areas, sd=sd, moi=moi)
sdaps.input = dfc_filter
differential = ld2dap.Differential()
differential.input = sdaps
out_vectors = ld2dap.RawOutput()
out_vectors.input = differential
raw_out.run()
# Compute vectors
out_vectors.run()
# Split
n = split; d = split_dim
return out_vectors.data
step = int(raw_out.data.shape[d] / n)
view = np.moveaxis(raw_out.data, d, 0)
cuts = list()
for i in range(n):
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
cuts.append(cut)
# Describe
dcuts = list()
for cut in cuts:
rinp = ld2dap.RawInput(cut, raw_out.metadata)
aps = ld2dap.SelfDualAttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
diff = ld2dap.Differential()
vout = ld2dap.RawOutput()
vout.input = diff
diff.input = aps
aps.input = rinp
vout.run()
dcuts.append(vout.data)
# Merge
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
view = np.moveaxis(descriptors, d, 0)
for i, cut in enumerate(dcuts):
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
return descriptors
def version():
return 'v0.0'

View File

@ -9,32 +9,64 @@
# TODO details
import numpy as np
import sys
sys.path.append('..')
import ld2dap
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None):
# Parse parameters type
def run(rasters, treshold=1e4, areas=None, sd=None, moi=None, split=1, split_dim=0):
"""DFC Self Dual Attribute Profiles
Compute description vectors for parameters. Rasters can be splitted along
`split_dim` before description proceeds.
"""
# Parse attribute type
treshold = float(treshold)
areas = None if areas is None else np.array(areas).astype(np.float).astype(np.int)
sd = None if sd is None else np.array(sd).astype(np.float)
moi = None if moi is None else np.array(moi).astype(np.float)
# Pipelines
# Load and filter
loader = ld2dap.LoadTIFF(rasters)
dfc_filter = ld2dap.Treshold(treshold)
normalize = ld2dap.Normalize(dtype=np.uint8)
raw_out = ld2dap.RawOutput()
raw_out.input = normalize
normalize.input = dfc_filter
dfc_filter.input = loader
sdaps = ld2dap.SelfDualAttributeProfiles(area=areas, sd=sd, moi=moi)
sdaps.input = dfc_filter
out_vectors = ld2dap.RawOutput()
out_vectors.input = sdaps
raw_out.run()
# Compute vectors
out_vectors.run()
# Split
n = split; d = split_dim
return out_vectors.data
step = int(raw_out.data.shape[d] / n)
view = np.moveaxis(raw_out.data, d, 0)
cuts = list()
for i in range(n):
cut = np.moveaxis(view[i*step:(i+1)*step+1], 0, d)
cuts.append(cut)
# Describe
dcuts = list()
for cut in cuts:
rinp = ld2dap.RawInput(cut, raw_out.metadata)
aps = ld2dap.SelfDualAttributeProfiles(areas, sd, moi, normalize_to_dtype=False)
vout = ld2dap.RawOutput()
vout.input = aps
aps.input = rinp
vout.run()
dcuts.append(vout.data)
# Merge
descriptors = np.zeros(raw_out.data.shape[:2] + (dcuts[0].shape[-1],))
view = np.moveaxis(descriptors, d, 0)
for i, cut in enumerate(dcuts):
view[i*step:(i+1)*step+1] = np.moveaxis(cut, 0, d)
return descriptors
def version():
return 'v0.0'

View File

@ -15,28 +15,31 @@ expe:
raster: ./Data/ground_truth/2018_IEEE_GRSS_DFC_GT_TR.tif
meta_labels: ./Data/ground_truth/jurse_meta_idx.csv
descriptors_script:
name: descriptors.dfc_aps
name: descriptors.dfc_sdaps
parameters:
split: 4
areas:
- 100
- 1000
- 1e4
moi:
- 0.5
- 0.7
- 0.9
rasters:
- ./Data/dfc_rasters/DEM+B_C123/UH17_GEM051_TR.tif
- ./Data/dfc_rasters/DEM_C123_3msr/UH17_GEG051_TR.tif
treshold: 1e4
cross_validation:
name: APsCVG
package: CVGenerators
name: Split
package: cvgenerators.jurse
parameters:
n_test: 2
n_test: 4
classifier:
name: RandomForestClassifier
package: sklearn.ensemble
parameters:
min_samples_leaf: 10
n_estimators: 10
n_estimators: 100
n_jobs: -1
random_state: 0